Q. 1 – Q. 20 carry one mark each.

1.	The v	alue of integral	$\int_{-\frac{\pi}{2}} x \cos(x)$	x)dx is						
	(A)	0	(B)	π–2	(C)	π	(D)	π + 2		
2.	The v	alue of the expr	ession –	$\frac{.5 + i10}{3 + i4}$ is						
	(A)	1 – i 2	(B)	1 + I 2	(C)	2 – i	(D)	2 + i		
3.	The v	alue of the expr	ession lin	$\int_{0}^{\infty} \left[\frac{\sin(x)}{e^{x} x} \right]$	is					
	(A)	0	(B)	$\frac{1}{2}$	(c)	1	(D)	$\frac{1}{1+e}$		
4.	In inv (A) (C)	entory cost stru has taken pla is independer	ice exteri	nally	(B)	is depende		y conditions ally		
5.	Accep (A) (C)	table Quality Le Producer's ris Lot tolerance	sk		ated with (B) (D)	Consumer' Average o	s risk utgoing qua	lity limit		
6.	The R (A) (B) (C) (D)	(C) estimating the valuation of stock analyzing the movement of an item in a store								
7.	If \vec{r} is $\int_{S} (\vec{r}.ds)$	the position ve S) is equal to	ctor of a	ny point or	n a closed surfa	ace S that en	closes the v	olume V, then		
	(A)	$\frac{1}{2}V$	(B)	V	(C)	2V	(D)	3V		
8.	Laplac	ce transform of	8t ³ is					40		
	(A)	$\frac{8}{s^4}$	(B)	$\frac{16}{s^4}$	(C)	$\frac{24}{s^4}$	(D)	$\frac{48}{s^4}$		
9.	proba	bility is $p = \alpha$ for will be equal to	or x ≥ 110), then the	probability of	x lying betwe	een 90 and	$\mu = 100$. If the 110, i.e., $P(90 \le 10^{-3})$	X ≤	
	(A)	$1-2\alpha$	(B)	$1-\alpha$	(C)	$1-\frac{\alpha}{2}$	(D)	2α		
10.	Poten		energy et	ffects are r	negligibly small	. Given: v =	specific volu	d one outlet streatme and p = pres		
	(A)	∫pdv	(B)	-∫pdv	(C)	∫vdp	(D)	-∫vdp		
11.		igerator, operat he maximum po				29.5°C, mair	ntains the re	efrigerated space	at	
	(A)	1.0	(B)	7.0	(C)	10.0	(D)	11.0		

Self locking condition for a pair of square thread screw and nut having coefficient of friction = μ , lead

12.

	of threa	ad = L and pitch	diamete	er of thread	d = d, is g	iven by				
	(A)	$d > \frac{L}{\pi \mu}$	(B)	$d > \pi \mu L$	(c)	d > μ	L	(D)	$\mu > Ld$	
13.	_	ate of stress at a					ess condi	tion is g	iven by	
	_	0								
	(A)	0	(B)	20	(c)	30		(D)	40	
14.	Which (A)	one of the follov Normalising	ving is a (B)	heat treati Annealing			face harde Irising	ning? (D)	Tempering	
15.		pair among the fusion welding; (P and R				asonic wel	ding; S – F		external source? elding P and S	
16.	In hollo (A) (B) (C) (D)	ow cylindrical pa maximum at th maximum at th maximum at th uniform throug	ie outer ie inner i ie mid-po	region region			·	e part is		
17.	Brittle (A) (B) (C) (D)	materials are ma results in lower improves surfa provides adequ results in more	cutting ce finish ate stre	force ngth to cut	tting tool	or negati	ve rake an	igle beca	ause it	
18.	When (A) (B) (C) (D)	0.8% carbon eut austenite trans pearlite transfo austenite trans pearlite transfo	forms to orms to a forms to	pearlite austenite martensit	0	rom 750°C	to room	tempera	ture,	
19.	Which (A)	one of the follow Cartesian prod		unary ope	ration perf (B)			lata mod	dels?	
	(C)	Set difference			(D)					
20.			of one o			the record lead t	ls of other ime offset	compor	ucture to identify h nent is known as	OW
				21 – Q. 75		o mark e	ach.			
21.	The eig	genvector pair of	the mat	trix $\begin{pmatrix} 3 & 4 \\ 4 & -1 \end{pmatrix}$	3)is					
	(A)	$\begin{cases} 2 \\ 1 \end{cases} \text{and} \begin{cases} 1 \\ -2 \end{cases}$				$\begin{cases} 2 \\ 1 \end{cases} a^{1}$ $\begin{cases} -2 \\ 1 \end{cases}$	$\operatorname{nd} \begin{Bmatrix} 1 \\ 2 \end{Bmatrix}$			
	(C)				(D)	$\begin{cases} -2 \\ 1 \end{cases}$	$\operatorname{and} \begin{Bmatrix} 1 \\ 2 \end{Bmatrix}$			
22.	If the i	nterval of integra	ation is o	divided into	two equa	l intervals	width 1.0,	the val	ue of the definite	
	integra	I $\int \log_{\rm e} x dx$, us	ing Simp	son's one-	third rule,	will be				
	(A)	1 0.50	(B)	0.80	(C)	1.00		(D)	1.29	

23.	and the	e game is termina the game is	ated. Assu	uming tha	at playe		ts the game, th		.
	(A)	$\frac{1}{2}$	(B)	$\frac{1}{2}$		(C)	$\frac{2}{3}$	(D)	$\frac{3}{4}$
24.	Laplace	् उ e transform of sin	h(t) is	2			3		4
21.	(A)	$\frac{1}{s^2 - 1}$	(B)	$\frac{1}{1-s^2}$	+	(C)	$\frac{s}{s^2-1}$	(D)	$\frac{s}{1-s^2}$
25.	1,50,00	voir contains an 0,000. If 2,00,000 vill be the depleti Rs. 10,00,000) barrels on charge	of oil are	produce pletion)	ed from for tha	this reservoir o		reservoir is Rs. particular year, how Rs. 25,00,000
26.	with a distribu	mean arrival rate	of 30 pe of 100 s	r hour. T	he time The ave	require	ed to serve a cu	istomer f	oisson distribution ollows an exponentia a customer in the
0.7			• •					(5)	0.002
27.			$ze z = 5x^2$ to the fore ≤ 2 ≥ 2	$_{1} + 3x_{2}$	(0)):		
	(A) (C)	no solution two solutions				(B) (D)	unique solutior unbounded sol		
28.	depreci	nine costing Rs. 2 iated over 4 year iation charged in Rs. 1.000 lakh Rs. 0.250 lakh	s using th	ne double	declini				rs = 0) is to be d. The amount of the
29.	of dissa	a survey of custo atisfied customers f dissatisfied customers 18.345, 0.205 18.345, 0.000	s was fou	nd to be	180. Th				taken. The number as for the control
30.	distribu compoi	nent of the assen rate, the reliabilit	ant failur nbly is rep by of the a	e rat of C placed im	0.20 per imediate for 200	3000 h ely with	nours of operati another comp	on. Assur onent that nd the m hours	ming that the failed
31.	Match t	the following:							
		Group '	1	Group					
		P – SLP					rty system ·		
		Q – Margin of S R – LOB	arety		embly I cility des		ancing		
		S - TRIPS			ak ever		sis		
	(A) (C)	P-4, Q-2, R-1, S P-4, Q-3, R-1, S		, 510		(B) (D)	P-3, Q-1, R-2, P-3, Q-4, R-2,		
32.	compo	has deposited Rs unded annually. <i>I</i> he have earned it	At the end	d of three	e years,	he had	l Rs. 3,153 in hi	s accoun	it. How much more

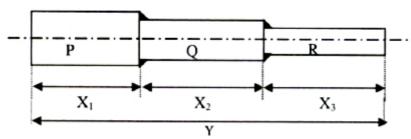
Page 3 of 11

(C)

Rs. 3

(A)

Rs. 300


(B)

Rs. 30

Rs. 0.30

(D)

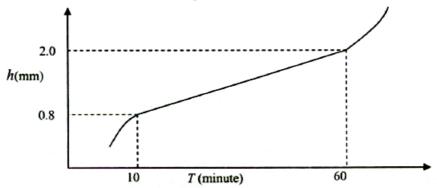
- 33. Two popes of uniform section but different diameters carry water at the same volumetric flow rate. Water properties are the same in the two pipes. The Reynolds number, based on the pipe diameter,
 - (A) is the same in both pipes
- (B) is larger in the narrower pipe
- (C) is smaller in the narrower pipe
- (D) depends on the pipe material
- 34. A single cylinder compression ignition engine, operating on the air-standard diesel cycle, has a mean effective pressure of 1.0 MPa and a compression ratio of 21. The engine has a clearance volume of $5x10^{-5}m^3$. The heat added at constant pressure is 2.0 kJ. The thermal efficiency of the engine is
 - (A) 10%
- (B) 35%
- (C) 50%
- D) 70%
- 35. An industrial gas ($c_p = 1 \text{ kJ/kgK}$) enters a parallel-flow heat exchanger at 250°C with a flow rate of 2 kg/s to heat a water stream. The water stream ($c_p = 4 \text{ kJ/kgK}$) enters the heat exchanger at 50°C with a flow rate of 1 kg/s. The heat exchanger has an effectiveness of 0.75. The gas stream exit temperature will be
 - (A) 75°C
- (B) 100°C
- (C) 125°C
- (D) 150°C
- 36. Oil is being pumped through a straight pipe. The pipe length, diameter and volumetric flow rate are all doubled in a new arrangement. The pipe friction factor, however, remains constant. The ratio of pipe frictional losses in the new arrangement to that in the original configuration would be
 - (A) $\frac{1}{4}$
- (B) $\frac{1}{2}$
- C) 2
- (D) 4
- 37. Air flows steadily at low speed through a horizontal nozzle, which discharges the air into the atmosphere. The area at the muzzle inlet and outlet are 0.1 m² and 0.02 m², respectively. If the air density remains constant at 1.0 kg/m³, the gauge pressure (in kpa) required at the muzzle inlet to produce an outlet speed of 50 m/s would be
 - (A) 0.6
- (B) 1.2
- (C) 100.2
- (D) 101.2
- 38. Heat is being transferred convectively from a cylindrical nuclear reactor fuel rod of 50 mm diameter to water at 75°C. Under steady state condition, the rate of heat generation within the fuel element is $5x10^7$ W/m³ and the convection heat transfer coefficient is 1 k W/m²K. The outer surface temperature of the fuel element would be
 - (A) 700°C
- (B) 625°C
- (C) 550°C
- (D) 400°C
- 39. In an assembly, the dimension of a component should be between 20 mm and 30 mm. Twenty five components were taken at random during the manufacturing of the components. The mean value of the dimension and the standard deviation of the 25 components were 26 mm and 2 mm respectively. The process capability index C_{PK} of the concerned manufacturing process would be
 - (A) 0.33
- (B) 067
- (C) 0.83
- D) 1.00
- 40. A three-component welded cylindrical assembly is shown below. The mean length of the three components and their respective tolerances (both in mm) are given in the table below.

Component	Mean Length (mm)	Tolerance (mm)
Р	$X_1 = 18$	± 1.2
Q	$X_2 = 23$	± 1.0
R	$X_3 = 24$	± 1.5

Assuming a normal distribution for the individual component dimensions, the natural tolerance limits for the length (Y) of the assembly (mm) is

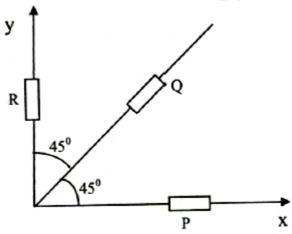
- (A) 65 ± 2.16
- (B)
- 65 ± 1.56
- (C) 65 ± 0.96
- (D) 65 ± 0.36

41.	For the	e partial different	ial equat	ion $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} =$	$=\pi^2 \frac{\partial u}{\partial t}$ in th	e domain 0 ≤ x ≤	1 with bo	oundary conditions
	u(0,t)	= 0 and u(1,t) =		_		= $sin(\pi x)$, the sc		
	equation (A)	$e^{-t} \sin(\pi x)$				$e^{-\pi t} \sin(\pi x)$	(D)	$e^{\pi t} \sin(\pi x)$
42.	Inverse	e of the matrix	0 1 0 1 0 0 0 0 1	is	et.			
						$ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} $	(D)	$ \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} $
43.	For rea	al x, the maximur	n value o	of $\frac{e^{\sin(x)}}{e^{\cos(x)}}$	is			
	(A)	1	(B)	е	(C)	$e^{\sqrt{2}}$	(D)	$e^{\frac{1}{\sqrt{2}}}$
44.	Tooth increas	forms are standa sed by 3 percent, 24 17	rd AGMA then the (B)	full depth e new pres	n involutes. ssure angle (C)	If the centre dista (in degrees) will l 17 49	ance, duri be (D)	ee pressure angle. ing assembly, is 14.56
45.	The so	lutions of the diff	ferent eq	uation d'	$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2\frac{dy}{dx}$	2y = 0 are		
	(A) (C)	$e^{-(1+i)x}$, $e^{-(1-i)x}$ $e^{-(1+i)x}$, $e^{(1+i)x}$			(B) (D)	2y = 0 are $e^{(1+i)x}, e^{-(1-i)x}$ $e^{(1+i)x}, e^{-(1+i)x}$	<	
46.	By app by an a in a sir	lication of tensile additional 20%. <i>I</i>	force, th Another b	ne cross s oar 'Q' of t	ectional are the same ma	a of a bar 'P' is fir aterial is reduced	st reduce in cross s	ed by 30% and then sectional area by 50% par 'P' and bar 'Q' will
	(A)	0.50 and 0.50	(B)	0.58 and	0.69 (C)	0.69 and 0.69	(D)	0.78 and 1.00
47.	placed	inside the mould	l cavity. ⁻	The densi	ties of core	material and lead	are 1600	and height 180 mm is kg/m³ and 11,300 g of molten metal wil
	(A)	19.7	(B)	64.5	(C)	193.7	(D)	257.6
48.	applyir j/mm ³ . respec	ng an electric cur The diameter ar	rent of 60 nd the th the elect	000 A for ickness of rical resis	0.15 sec. The weld nugge	et are found to be	or meltin 5 mm ai	g aluminium is 2.9
	(A)	28	(B)	35	(C)	65	(D)	72
49.		• .		•		om 4mm to 3 mm ec) at the neutral	•	0 mm diameter rolls
	(A)	1.57	(B)	3.14	(C)	47.10	(D)	94.20
50.	clearar mm fo	nce between the rathis blanking op	die and t eration,	he punch	is 6% of sh ely, are	eet thickness. Th	e punch a	The required radial and die diameters (in
	(A) (C)	50.00 and 50.3 49.70 and 50.0			(B) (D)	50.00 and 50 49.85 and 50		
					(1)	T / .UU UIIU .JU		


51. In an electro chemical machining (ECM) operation, a square hole of dimensions 5 mm × 5 mm is drilled in a block of copper. The current used is 5000 A. Atomic weight of copper is 63 and valency of dissolution is 1. Faraday's constant is 96500 Coulomb.

The material removal rate (in g/s) is

- (A) 0.326
- 3.260 (B)
- (C) 3.15×10^3
- 3.15×10^{5}
- A shaft of diameter 10 mm transmits 100 W of power at an angular speed of $\frac{800}{\pi}$ rad/s. 52.


The maximum shear stress (in MPa) developed in the shaft is

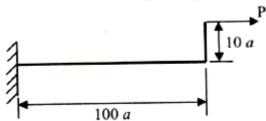
- (A)
- (B)
- (D) 16
- During machining, the wear land (h) has been plotted against machining time (T) as given in the 53. following figure.

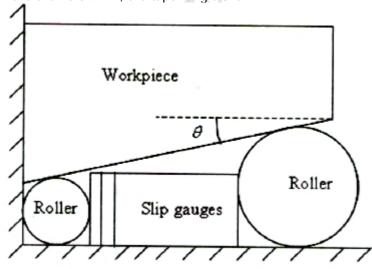
For a critical wear land of 1.8 mm, the cutting tool life (in minute) is

- (B) 51.67
- (C)
- (D) 50.00
- A strain rosette, as shown in the figure, has three strain gauges P, Q and R. 54.

If the values of strain indicated in the three stain gauges are

- $\epsilon_P = 100 \times 10^{-6}, \qquad \epsilon_Q =$ The largest principal strain is
- $\epsilon_Q = 150 \times 10^{-6}$ and
- $\varepsilon_{R} = 200 \times 10^{-6}$


- 200× 10⁻⁶ (A)
- 250× 10⁻⁶ (B)
- 300× 10⁻⁶
- (D) 350×10^{-6}
- 55. A cantilever beam XY o length 2 m and cross-sectional dimensions 25 mm \times 25 mm is fixed as X and is subjected to a moment of 100 N-m and an unknown force P at the free end Y as shown in the figure. The Young's modulus of the material of the beam is 200 GPa.


If the deflection of the free end Y is zero, then the value of p (in N) is 75

- (A)
- (B)
- (C) 133
- (D) 150

56. A frame of square cross-section of $(a \times a)$ is as shown in the figure. The stress near the fixed end on the upper side of the frame is

- (A) $\frac{58P}{\alpha^2}$
- (B) $\frac{59}{\alpha^2}$
- (C) $\frac{60}{\alpha^2}$
- (D) $\frac{61F}{\alpha^2}$
- 57. A steel wire of diameter 2 mm is wound on a rigid drum of diameter 2 m. If the Young's modulus of the steel is 200 GPa, the maximum stress (in MPa) in the steel wire is
 - (A) 50
- (B) 100
- (C) 200
- (D) 400
- 58. The quijck return mechanism used in a shaper has rocker arm drive of length 200 mm. If th crank radius is 50 mm and the offset between crank centre and rocker arm pivot is 20 mm, length of the stroke (in m) is
 - (A) 0.5
- (B) 1.0
- (C) 1.5
- (D) 2.0
- 59. A stepper motor has 150 steps. The output shaft of the motor is directly coupled to a lead screw of pitch 4 mm, which drives a table. If the frequency of pulse supply to the motor is 200 Hz, the speed of the table (in mm/min) is
 - (A) 400
- (B) 320
- (C) 300
- (D) 280
- 60. An experimental setup is planned to determine the tape of workpiece as shown in the figure. If the two precision rollers have rasii 8 mm and 5 mm and the total thickness of slip gauges inserted between the rollers is 15.54 mm, the taper angle θ is

- (A) 6 degree
- (B) 10 degree
- (C) 11 degree
- (D) 12 degree
- 61. Following data are given for calculating limits of dimensions and tolerances for a hole; Tolerance unit I (μ m) = $0.45\sqrt[3]{D} + 0.001D$. The unit of D is mm. Diameter step is 18-30 mm. If the fundamental deviation for H hole is zero and IT8 = 25i, the maximum and minimum limits of dimension for a 25 mm H₈ hole (in mm) are
 - (A) 24.984, 24.967

(B) 25.017, 24.984

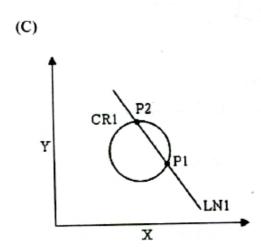
(C) 25.033, 25.000

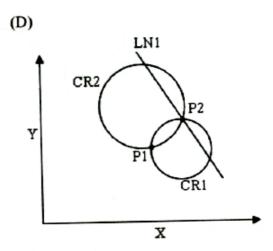
(D) 25.000, 24.967

62. Match the following:

Group 1

- P Wrinkling
- Q Centre burst
- R Barrelling
- S Cold shut
- (A) P-2, Q-3, R-4, S-1
- (C) P-2, Q-3, R-1, S-4


- Group 2
- 1. Upsetting
- 2. Deep drawing
- 3. Extrusion
- 4. Closed die forging
- (B) P-3, Q-4, R-1, S-2
- (D) P-2, Q-4, R-3, S-1
- 63. Suppose point p₁ in APT (Automatically programmed Tool) programming is coded by statement $P_1 = POINT/XSMALL, INTOF, LNI, CRI$


The coded geometric situation without causing error is

(A) LNI CR1 Y

X

LN1 CRI Y Х

64. Match the following:

Group 1

- P Mulling
- Q Impregnation
- R Flash trimming
- S Curing
- P-4, Q-3, R-2, S-1 (A)
- (C) P-2, Q-1, R-4, S-3

Group 2

- 1. Powder metallurgy
- 2. Injection moulding
- 3. Processing of FRP composites
- 4. Sand casting
- (B) P-2, Q-4, R-3, S-1
- (D) P-4, Q-1, R-2, S-3
- 65. When P is the rate of production, D is the demand rate and t is the duration of production, the actual inventory built up during production period in the EPQ model is
 - (A) Zero
- (B)
- (P+D) t
- (P-D)/t(D)

Consider the following work sampling data: 66.

Working time = 60%, average rating = 90%, relaxation allowance = 12.5%, Actual output during the study = 1000 units and study duration = 480 minutes.

The standard time per unit (in minutes) will be

- (A) 0.2592
- (B) 0.2916
- 0.3240
- (D)

67. Six jobs are received for processing and their processing times and delivery dates are given below:

Job Sequence	Production Time	Delivery Date (days)			
	(days)				
Р	2	4			
Q	5	18			
R	3	8			
S	4	4			
Т	6	20			
U	4	24			

Using FCFS dispatching rule, the average lateness is

(A) 2.

(B) 1.5

(C) 1.0

(D) 0.5

68. An assembly line data is given below:

Station	1	2	3	4	b	6
Cycle time	90	90	90	90	90	90
Task time	70	70	80	70	80	60
Idle time	20	20	10	20	10	30

The percentage utilization of labour on the assembly line is

(A) 20.37

(B) 25.58

(C) 26.63

(D) 79.62

69. In mostly accepted and applicable PTS systems (i.e. MTM-2), the motions and their codes are specified. Match the following

Group 1

P – Weight factors

Q - GET

R - PUT

S – Apply pressure

Group 2

1. GW 2. GA

3. PB

4. A

(A) P-1, Q-3, R-4, S-2

(B) P-2, Q-1, R-3, S-4

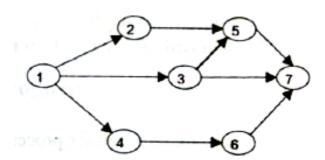
(C) P-1, Q-4, R-3, S-2

(D) P-1, Q-2, R-3, S-4

70. Daily demand of a product is normally distributed with a mean of 50 units and a standard deviation of 5. Supply conditions are virtually certain with a lead time of 6 days. If a 95 percent service level is desired, the reorder point $(Z_{0.95} = 1.645)$ is

(A) 340 units

(B) 320 units


(C) 300 units

(D) 280 units

Common Data Questions

Common Data for Questions 71, 72 and 73:

The figure illustrates a PERT network describing the precedence relationship among different activities. The optimistic time, most likely time and pessimistic time of the activities are given in the table below.

Activity	Optimistic time	Most likely time	Pessimistic time
	(hour)	(hour)	(hour)
1-2	7	9	11
1-3	5	7	9
1-4	4	7	10
2-5	8	10	12
3-5	6	9	12
3-7	8	10	12
4-6	4	6	8
5-7	5	8	11
6-7	3	5	7

- The length of the critical path (in hours) is 71.
 - (A)
- 17
- (B)
- 18

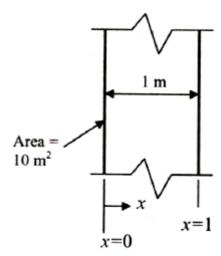
24

1.37

- 27 (D)
- 72. The standard deviation of the critical path (in hours) is
 - (A)
- 0.66
- 0.94 (B)
- 1.56 (D)

- 73. The slack at event number 3 (in hours) is 3
- (B)
- (D) 10

Common Data for Questions 74 and 75:


A quadratic Bezier curve segment is described by $\tilde{r}(u) = \sum B_{i,2}\tilde{r}_i$ where $\omega \tilde{r}_i$ and $B_{i,2}$ are control points and

blending functions respectively. Given: $B_{i,2} = {}^2C_iu^i (1-u)^{2-i}, u \in [0,1]$ Consider (0, 0), (4, 4) and (12, 8) as the control points of the Bezier curve.

- 74. The point (1, 2) lies
 - (A) on the Bezier curve
 - (B) on the boundary of the convex hull
 - (C) outside the convex hull
 - (D) within the convex hull but not on the Bezier curve
- 75. Slope of the tangent at point (5, 4) to the Bezier curve is
 - -0.667
- (B) -0.333
- 0.333
- (D) 0.667

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76and 77:

A wall is heated uniformly at a volumetric heat generation rate of 1 kW/m³. The temperature distribution across the 1 m thick wall at a certain instant of time is given by:

$$T(x) = a + bx + cx^2$$

Where $a = 900^{\circ}C$, $b = -300^{\circ}C/m$, and $c = -50^{\circ}C/m^{2}$.

The wall has an area of 10 m² (as shown in the figure) and a thermal conductivity of 40 W/mK.

76.	The ra	te of heat transfe 900	er (in k V (B)	V) into the 450	e wall (at x=0) (C)	is 120	(D)	60
77.	The ra	te of change of ϵ	energy st	orage (in 120	kW) in	the wall	is –10	(D)	-30
Staton		r Linked Answe		tions 70	and 70			` '	
Staten	nent io	r Linkea Answe	er Ques	LIONS 78		7 :			
mm, re force is the wat	spective applied	ely. The coefficient to stop the part cific heat 4.0 kj /	nt of fric rotating	tion at the at 8000 r	interfa	ace of lin	ning and rotating e disk brake, an	part is arrange	120 mm and 60 0.35. A 10 kN axial ment of circulating and heat transfer by
78.	The to	rque (in N-m) ap 215	plied by (B)	the brake 315	on the	rotatino (C)	g part is 630	(D)	1260
79.	The ma	ass flow rate (in 2.2	kg/s) of (B)	water req 3.4	uired to	o mainta (C)	in a temperature 10.4	e rise of (D)	3°C is 21.0
Staten	nent fo	r Linked Answe	er Ques	tions 80	and 8	1:			
		eter annealed sto yield stress of the				a die at	a speed of 0.5 i	m/sec to	reduce the diameter
80.	Neglec (A)	ting friction and 178.5	strain ha (B)	ardening, t 357.0	the stre	ess requi (C)	red for drawing 1287.5	(in MPa) (D)	is 2575.0
81.	The po	ower required for 8.97	the drav	wing proce 14.0	ess (in	kW) is (C)	17.95	(D)	28.0
Staten	nent fo	r Linked Answe	er Ques	tions 82	and 83	3:			
Referer Given:	In an orthogonal cutting experiment, an HSS tool having the following tool signature in the orthogonal Reference system (ORS) has been used: $0-10-7-7-10-75-1$. Given: width of cut = 3.6 mm; shear strength of workpiece material = 460 N/mm^2 ; Depth of cut = 0.25 mm; coefficient of friction at tool-chip interface = 0.7 .								
82.	Shear (A)	plane angle (in d 20.5	egree) fo	or minimu 24.5	m cutti	ng force (C)	e is 28.5	(D)	32.5
83.	Minimu (A)	ım power require 3.15	ement (ir (B)	n kW) at a 3.25	cutting	g speed (C)	of 150 m/min is 3.35	(D)	3.45
84.	The for (A)	recast error bias –330 units	is (B)	–110 uni	ts	(C)	110 units	(D)	330 units
Staten	nent fo	r Linked Answe	er Ques	tions 84	and 85	5:			
•	•			•					e next three months. nose three months.
85.	The for (A) (B) (C) (D)	recasting technic under forecast over forecast w under forecast over forecast w	with 21. vith 21.50 with 64.	56% bias 6% bias 70% bias	dency	to			

END OF THE QUESTION PAPER