			Q.	1 – Q 20 d	carry	one ma	ark each.		
1.	Ramsai (A) (C)	r list is related to Wetlands Seismic zones				(B) (D)	Heritage buildi Special Econor		S
2.	Hazen's (A) (C)	s-William's nomo size of sanitary capacity of over	pipe line	es	•	(B) (D)	size of water s capacity of wa		pe lines red for fire fighting
3.	A woor (A) (C)	nerf is a pavement patte speed reducing		t	ne	(B) (D)	sanitation syst furniture detail		ent
4.	In urba (A) (B) (C) (D)	in planning, coho age and sex cla contour levels in land use classifi soil layer classif	ssification slope a ication o	on of popul analysis		i-public	spaces		
5.	The pro (A) (C)	oject Habitat, Mo high rise apartn organic archited	nents	lesigned by	y Most	ne Safdie (B) (D)	e is an example low rise detach prefabricated h	ned dwel	lings
6.	The de (A)	gree of freedom two	of a joir (B)	it in a plan three	e truss	s is (C)	four	(D)	six
7.	A brick (A)	cut lengthwise i King closer	nto two (B)	pieces so t Frog	hat ea	ich piece (C)	e is half as wide Quoin brick	as the f (D)	ull brick is called a Queen closer
8.	The str (A) (C)	ength of concret increase in wate increase of wor	er cemei		SE	(B) (D)	decrease in wa decrease in ce		
9.	The po (A) (C)	int of contraflexu shear force cha bending momei	nges its	sign	ere the	(B) (D)	deflection is ze torque is zero	ero	
10.		wind loads are ac al are increased k 10%	ру	l for in the 16.33%	desigr	n of stru (C)	ctures, the perr 33.33%	nissible s (D)	stresses in the 50%
11.	The ter	m coined by Pac		that comb		cology v			als with habitants
	mainta (A)	ining an extreme Archaeology	ly high p (B)	opulation Proxemics		y is (C)	Arcology	(D)	Utopia
12.	A disloo (A)	cation of continu Fissure	ity in roo (B)	k strata as Fault	a res	ult of cr (C)	acking of the ea Eluvium	arth's cru (D)	st is called Drift
13.	LEED is (A) (C)	the internationa Green buildings Intelligent build		pted rating	syste	m for (B) (D)	Fir resistant bu Tall buildings	uildings	
14.	An arch (A) (C)	hitect of the Chic Richard Boyle Hector Guimarc	C	ool movem	ent is	(B) (D)	Louis Sullivan William Morris		
15.	Surkhi (A) (C)	is obtained by gr well burnt clay stone aggregate	bricks	-	ott	(B) (D)	Slag from indu rice husk	istry	
16.	Hemad (A)	panthi style of te Himalaya	emples b (B)	elongs to Deccan		(C)	Orissa	(D)	Kerala
17.	A build outside	ing in which the	roof is p	erfectly he	misph	erical or	n the inside and	a shallo	w dome on the
	(A)	Hagia Sopia	(B)	Pantheon		(C)	Parthenon	(D)	Gol Gumbaz

18.	National Science Centre at Pragati maidan, New Delhi, is designed by (A) J. A. Stein (B) Anant Raje (C) Raj Rewal (D) A. P. Kanvinde
19.	In Islamic architecture, the device used for placing a perfect circular dome over a square plan is
	called a (A) Mehrab (B) Scroll (C) Mastaba (D) Squinch
20	
20.	 Parallel sound rays incident on a convex surface of a fibre-board will (A) converage and reduce in intensity (B) converage and increase in intensity (C) disperse and reduce in intensity (D) disperse and increase in intensity
Q. 21	to Q. 75 carry two marks each.
21.	Match the architect-planners in Group II with their contributions in Group IIGroup IGroup IIP.HippodamusQ.MichelangeloR.Leon battista AlbertiS.Daniel BurnhamA.CampidoglioS.P - 3, Q - 4, R - 2, S - 1B.P - 3, Q - 5, R - 2, S - 4
	(C) $P - 4$, $Q - 1$, $R - 5$, $S - 3$ (D) $P - 3$, $Q - 2$, $R - 1$, $S - 5$
22.	The characteristics of Japanese gardens areP.Stepping stonesQ.Stone lanternsR.Octagonal geometryU.Monumental scale(A)P, Q, S, T(B)P, Q, U(C)R, S, T(D)Q, r, S, T
23.	Match the styles of architecture in Group IGroup IGroup IIGroup IGroup IIP.KhajurahoQ.DravidianQ.DravidianR.HoyasalaS.Himalaya(A) $P - 1$, $Q - 2$, $R - 4$, $S - 3$ (C) $P - 2$, $Q - 4$, $R - 3$, $S - 1$ (B) $P - 4$, $Q - 2$, $R - 1$, $S - 3$ (D) $P - 3$, $Q - 4$, $R - 2$, $S - 1$
24.	A site has a uniform slope of 6%. The site map has seven contour lines with the elevation of the highest contour as +53 metres. If the distance between the midpoints of the highest and the lowest contours is 700 metres, then the contour interval in metres is (A) 6 (B) 7 (C) 11 (D) 42
25.	 Match the statements about thermal comfort in Group I with True/False in Group II Group I P. Low capacitance materials should be used to store heat 1. True gain. Q. Stack effect depends on temperature difference between 2. False indoor and outdoor air R. Venturi effect is a passive cooling technique S. Wind breaks are used to maximize winter wind turbulence (A) P - 1, Q - 2, R - 2, S - 2 (B) P - 1, Q - 2, R - 2, S - 1 (C) P - 2, Q - 1, R - 1, S - 2 (D) P - 2, Q - 1, R - 1, S - 1
26.	A person standing at a point in a public plaza is observing a façade of height 40 metres from a distance of 120 metres. The sense of enclosure experienced by the person is equivalent to the limits of (A) Loss of enclosure (B) Minimal enclosure

(A)	Loss of enclosure	(B)	Minimal enclosure
(C)	Full enclosure	(D)	Threshold of enclosure

27.	Match Grou	the Urban Planning Theories in (p I	Group I with their Group II	proponents in Group II.			
	Ρ.	Sector Theory	1. Water Christaller				
	Q. R.	Multiple Nuclei Theory Neighbourhood Theory	 Clarence Ebenzer 				
	к. S.	Central Place Theory	 Ebenzer I Harris an 				
	0.		5. Homer H				
	(A) (C)	P – 1, Q – 4, R – 5, S – 3 P – 5, Q – 1, R – 2, S – 3	(B) (D)	P – 4, Q – 2, R – 3, S – 1 P – 5, Q – 4, R – 2, S – 1			
28.	-	an of a residential area with sma fine grain and uniform texture	II houses on smal (B)	ll plots has an urban fabric with coarse grain and uniform texture			
	(A) (C)	fine grain and uneven texture	(D)	coarse grain and uneven texture			
29.		the 'Change Properties' comman m on a given dashed line.	d in AutoCAD (Gr	roup I) with the actions (Group II) it o	can		
	Grou		Group II				
	Ρ.	Elev		the dashed line to a non-dashed line			
	Q. R.	L Type Thickness		the size and spacing of the dashes the position along the Z axis			
	S.	Lt Scale		the width of the line of the screen			
			5. Changes	the height along the Z axis			
	(4)			the position along the Y axis			
	(A) (C)	P – 6, Q – 1, R – 4, S – 2 P – 3, Q – 1, R – 5, S – 2	(B) (D)	P – 5, Q – 2, R – 6, S – 4 P – 6, Q – 4, R – 3, S – 1			
	• •						
30.	Match Grou	the statements on intelligent bui	lidings in Group I	Group II.			
	P.	All intelligent buildings are exan	nples of high-tech				
	0	architecture		rthuilding 2 Folos			
	Q. R.	An intelligent building is synony An intelligent building need not					
	S.	automation system High-tech architecture always re buildings	esults in intelliger	t			
	(A) (C)	P – 1, Q – 1, R – 2, S – 2 P – 2, Q – 2, R – 1, S – 1	(B) (D)	P – 1, Q – 2, R – 2, S – 2 P – 2, Q – 1, R – 1, S – 1			
31.	The co main i		onents of a house	water connection from the municipa	l water		
	(A)	Stop rock \rightarrow Water meter \rightarrow G	oose neck \rightarrow Ser	vice pipe \rightarrow Ferrule connection			
	(B)			\rightarrow Service pipe \rightarrow Water meter			
	(C) (D)			$pe \rightarrow Water meter \rightarrow Stop cock$ $pe \rightarrow Stop cock \rightarrow Water meter$			
32.		gure that will be generated by the		•			
JZ.		and: pline	e following seque				
	Specify	y start point: 0, 0					
	Specify	y next point: @50, 0					
	Specify	y next point: @0, −25					
	Specify	y next point: @25 < 180					
	Specify	y next point: c					
	(A)	(B)	(C)	(D)			
			/				
	2						

33.		ersons per hectare and a net density of 400 persons per hectare. es, then the percentage of non-residential area is (C) 37.5 (D) 40
34.	Match the systems of plumbing for bu	ilding drainage in Group I with their descriptions in Group II.
	Group I	Group II
	P. One-pipe system	 Minimum two pipes, one for soil and the other for sullage
	Q. Two-pipe system	2. Single pipe for soil and sullage, and serving as
		vent for al traps
	R. Single stack system	 Minimum two pipes, one for soil and sullage and the other for vent
		4. Single pipe for soil and sullage, and serving as
		vent for soil traps only
	(A) P – 4, Q – 3, R – 2 (C) P – 2, Q – 3, R – 4	(B) $P = 3, Q = 2, R = 1$ (D) $P = 3, Q = 1, R = 2$
	(0) 1 2, 2 0, 10 1	
35.		s of m and j is used to check its determinancy and stability, j = number of joints. The truss is deficient and unstable when
	(A) $m < 2j - 3$	(B) $m = 2j - 3$
	(C) $m > 2j - 3$	(D) both (A) and (B) are correct
36.	Match the functions in Group I with th	ne numbers shown in the figure of concentric Zone Theory by
50.	Burgess.	ie nambers shown in the lighte of concentric zone meory by
	Group I	
	P. Central Business District	
	Q. commuters' Zone	(((1)2)3)4)5
	R. Workingmen's Homes	
	S. Zone of Better residences	
	T. Zone of Transition	
	(A) P - 1, Q - 2, R - 5, S - 4, T - (C) P - 2, Q - 4, R - 5, S - 3, T -	
37.	For a PERT activity, the optimistic tim	e, most likely time and pessimistic time are 1, 2 and 9 days
	respectively. The expected time for the	ne activity (in days) is
	(A) 9 (B) 6	(C) 4 (D) 3
38.	Zoning regulations deal with	
	P. Density	S. Minimum areas of rooms
	Q. Land use R. Building materials	T. Height U. Reserved land areas
		R, U (C) Q, S, U (D) Q, R, S, T
39.	Match the temples in Group I with the	air distinguishing features in Group II
07.	Group I	Group II
	P. Konark	1. Golden Lily Pond
	Q. Kadurai R. Dilwara	 Sculpted Marble Ceiling Twin Vimanas
	S. Mamallapuram	4. Chariot
		5. Torana
	(A) P – 3, Q – 1, R – 2, S – 5 (C) P – 2, Q – 3, R – 5, S – 1	(B) $P - 4, Q - 1, R - 2, S - 3$ (D) $P - 3, Q - 4, R - 1, S - 2$
40.		ents in a classical Order arranged from top to bottom is $I \rightarrow Cornice \rightarrow Shaft \rightarrow Pedestal \rightarrow Base$
		$r \rightarrow \text{Connice} \rightarrow \text{Shart} \rightarrow \text{Pedestal} \rightarrow \text{Base}$ ce \rightarrow Frieze \rightarrow Base \rightarrow Shaft \rightarrow Pedestal
	(C) Cornice \rightarrow Frieze \rightarrow Architrav	$e \rightarrow Capital \rightarrow Shaft \rightarrow Base \rightarrow Pedestal$
	(D) Cornice - Canital - Frieze -	Δrchitrave> Shaft> Pedestal> Base

(D) Cornice \rightarrow Capital \rightarrow Frieze \rightarrow Architrave \rightarrow Shaft \rightarrow Pedestal \rightarrow Base

41.	Match the tree forms in Group I with their common examples in Group II.
	Group I Group II
	P. Broad 1. False Acacia
	Q. Tapering 2. Holly
	R. Conical 3. Lombardy Polar
	S. Columnar 4. Oak
	5. Silver Maple
	(A) P – 1, Q – 5, R – 4, S – 2 (B) P – 1, Q – 3, R – 4, S – 5
	(C) P – 4, Q – 1, R – 2, S – 3 (D) P – 4, Q – 5, R – 2, S – 1
42.	A town has 16,000 existing dwelling units of which 10% are dilapidated. If the housing need is 8,700
	dwellings units and the average household size is 4.5, then the population of the town is
	(A) 64,800 (B) 1,03,950 (C) 1,11,150 (D) 1,18,350
43.	Match the descriptions in Group I with the elements of Ornamentation in Group II.
	Group I Group II
	P. Painting on a freshly spread moist plaster surface with powdered 1. Chiaroscuro
	pigments
	Q. Figure incised into a stone surface or a metal plate yielding an 2. Emboss
	impression in relief
	R. Delicate or intricate design on lattice work allowing light through 3. Filigree
	openings
	S. Artistic composition consisting of motifs borrowed from different 4. Fresco
	sources
	5. Intaglio
	6. Pastiche
	(A) $P - 1, Q - 2, R - 3, S - 5$ (B) $P - 1, Q - 5, R - 4, S - 6$
	(C) $P - 4, Q - 2, R - 3, S - 1$ (D) $P - 4, Q - 5, R - 3, S - 6$
44.	Match the city plans in Group I with their designers in Group II.
	Group I Group II
	P. London 1. Eliel Saarinen
	Q. Berlin 2. Kenzo Tange
	R. Helsinki 3. Alvar Aalto
	S. Tokyo 4. Tadao Ando
	5. Martin Machler
	6. Patrick Abercrombie
	(A) $P = 6, Q = 5, R = 1, S = 2$ (B) $P = 1, Q = 3, R = 5, S = 2$
	(C) $P = 6, Q = 3, R = 1, S = 4$ (D) $P = 5, Q = 6, R = 3, S = 4$
45.	On a door opening with effective span I, the total weight (W) of an equilateral triangle on the base L
101	is considered as a uniformly distributed load over the span. The bending moment for the door
	opening is given by
	(A) WL/2 (B) WL/4 (C) WL/6 (D) WL/8
46.	Match the descriptions in Group I with the traffic terminology in Group II.
101	Group I Group I
	P. The length of a road ahead of the vehicle which should be 1. Visibility distance
	visible to enable a driver to stop in case of an obstruction
	on the road
	Q. Distance covered by a vehicle from the instant a driver 2. Sighting distance
	sees an obstruction ahead and brings the vehicle to a
	stop
	R. Distance required for a vehicle to overtake and safely 3. Overtaking sight
	pass another vehicle moving in the same direction but at distance
	a lower speed
	4. Cross over distance
	5. Stopping distance
	(A) $P = 1, Q = 3, R = 4$ (B) $P = 4, Q = 3, R = 5$
	(A) $P = 1, Q = 3, R = 4$ (B) $P = 4, Q = 3, R = 3$ (C) $P = 2, Q = 5, R = 4$ (D) $P = 2, Q = 5, R = 3$
	$(0) r = 2, \ Q = 0, \ R = 4$ (0) $r = 2, \ Q = 0, \ R = 5$

47. Match the labels on a paneled door in Group I with their names in Group II.

47.	Match the labels on a paneled door in Group I with their names in Group II. Group I Group II
	1. Jamb
	2. Muntin 3. Panel
	\mathbf{P} \mathbf{A} . Rail
	5. Saddle 6. Stile
	•
	• R
	• S
	- T
	(A) $P - 1, Q - 6, R - 5, S - 4, T - 2$ (B) $P - 1, Q - 6, R - 2, S - 4, T - 3$ (C) $P - 5, Q - 3, R - 1, S - 6, T - 2$ (D) $P - 5, Q - 6, R - 1, S - 4, T - 3$
48.	A house was constructed 20 years ago at a cost of Rs. 1,00,000. The estimated life of the building is
	50 years, at the end of which it will have a 15% scrap value of tis cost of construction. Its present value in Rupees is
	(A) 36,000 (B) 66,000 (C) 75,000 (D) 85,000
49.	A typical roof top Rainwater harvesting System essentially comprises of
	P. roof catchment Q. Down pipes
	R. Rain gauge
	S. Filter Chamber (A) P, R (B) P, r, S (C) Q, R, S (D) P, Q, S
50.	Match the architects in Group I with their works in Group II.
	Group I Group II P. Norman Foster 1. Petrons Towers
	Q. Cesar Pelli 2. Kansai Airport
	R.Richard Meier3.HSBC, HongkongS.Renzo Piano4.The Atheneum
	5. Sydney Opera House
	(A) $P - 3, Q - 1, R - 4, S - 2$ (B) $P - 4, Q - 1, R - 2, S - 3$ (C) $P - 3, Q - 2, R - 5, S - 1$ (B) $P - 4, Q - 1, R - 2, S - 3$ (D) $P - 5, Q - 3, R - 1, S - 2$
54	
51.	A single room of 3 metres \times 5 metres enclosed by 20 cm thick wals has to be constructed. The required foundation trench is 80 cm wide and 80 cm deep. The quantity of earthwork in excavation in
	cubic metres is (A) 10.75 (B) 12.80 (C) 18.70 (D) 20.24
50	
52.	Match the parts of a tree log in Group I with their descriptions in Group II. Group I Group II
	P. Heartwood 1. Outer annual rings of the tree
	Q. Sapwood 2. Thin horizotnla veins radiating from the pith towards the bark
	R. Cambium Layer 3. Outermost protective covering of the log
	S.Medullary Rays4.Outermost protective covering of the log5.Outermost one ring between the bark and
	sapwood
	(A) $P - 4$, $Q - 2$, $R - 5$, $S - 3$ (B) $P - 3$, $Q - 5$, $R - 4$, $S - 1$ (C) $P - 4$, $Q - 1$, $R - 5$, $S - 2$ (D) $P - 5$, $Q - 1$, $R - 4$, $S - 2$

53.		uantity of plastering i h a window opening 25.2 (B)	$2.0 \text{ m} \times 0.3$			des of a wall 30.0	5.0 m × 0.3 (D)	0 m × 3.0 m (L 34.8	×B×
54.	Match Grou P. Q. R. S. (A) (C)	the urban theorists i p I Patrick Geddes Charles Abrams Constantine Doxiadis Lewis Mumford P – 1, Q – 3, R – 4 P – 3, Q – 4, R – 1	, S – 2	ith the p Group 1. 2. 3. 4.	II Cities in Judicious Role of h	evolution and to use of techno ousing in urbance of human s P = 4, Q =	their relations logical power n developme	nt alled Ekistics - 1	
55.		reinforcement steel p required in kilograms 655.5 (B	is	U.	lab of vo	olume 15.0 cu 1,1775.5	u.m. is @ 19 (D)	%, then the qu 1,500.0	antity of
56.	The p P. Hor Q. Ext R. Foc S. Ste	rairie House design o izontal planes ended roofs cal fire place el columns ticla Screen windows P, R, S (B)	f Frank Lloy	d Wrigh			(D)	P, Q, R, T	
57.	Grouj P.	Bay window	Group I wit	Group I 1.	l Horizonta frame	al louvers pivot	ting simultane	eously in commo	'n
	Q. R.	Pivoted window Dormer window		2. 3.	horizonta Projectin	hat rotates 90° al axis at or nea g outward fror an alcove withi	ar its centre n the main w	all of a building,	
	(A) (C)	P – 3, Q – 2, R – 4 P – 1, Q – 4, R – 2		4.		vindow project P – 2, Q – P – 4, Q –	ing out of a s 3, R – 1	sloping roof	
58.	Grou P. Q. R. S.	Tara Group Housing, Marine Front Housing Aranya Community Ho Indore Asiad Village, New De	New Delhi , Cochin busing, Ihi	with the Group 1. 2. 3. 4. 5. 6.	II Balkrishn Charles (Hasmukh Kuldip Si Laurie Ba Raj Rewa	a Doshi Correa n Patel ngh aker al			
	(A) (C)	P – 2, Q – 4, R – 1 P – 2, Q – 5, R – 6	, S – 1	R	(B) (D)	P – 1, Q –	4, R – 2, S · 5, R – 3, S ·	- 6	
59.	It carr	m of 50 mm diamete ries two load of 50 kN er span is 11.17 (B	l each at on						
60.		the Earthquake relat	ed terms in , S – 4	Group I Group 1. 2. 3. 4.	with the II The geog vertically The origi the earth The poin a structu The poin	eir definitions graphical point above the orig nating source t correspondin ral system t through whic forces of a str P = 1, Q =	in Group II on the earth ginating source of the seismic g to the cent h the resulta	ce c waves inside re of gravity of nt of the m act - 3	
				Page	(D) 7 of 10		τ, ιττ, Ο·		

61.	Match the architectural styles in Group I with the construction system in Group II.Group IGroup IIP.Greek1.Q.Roman2.R.Indian3.S.Gothic4.(A) $P-2$, $Q-4$, $R-3$, $S-1$ (B)(C) $P-2$, $Q-1$, $R-3$, $S-4$ (B) $P-3$, $Q-1$, $R-2$, $S-4$
62.	 For incandescent lamps the distribution of total energy emission is (A) 5% light & 95% heat (B) 25% light and 75% heat (C) 50% light & 50% heat (D) 75% light & 25% heat
63.	 Match the characteristics in Group I with the climate types in Group II. Group I P. High humidity accelerates rusting and rotting Q. High daytime temperature and rapid cooling at night Q. High daytime temperature and rapid cooling at night Q. High daytime temperature and rapid cooling at night Q. Hot dry desert Composite or monsoon Q. High daytime temperature and rapid cooling at night Q. Hot dry desert Cause materials to crack R. Seasonal changes in relative humidity cause rapid Warm humid (A) P - 5, Q - 2, R - 1 (B) P - 4, Q - 1, R - 3 (C) P - 5, Q - 3, R - 4 (D) P - 4, Q - 3, R - 5
64.	The architectural projects of the International Style are P. Aurora House by Aldo Rossi Q. Schroder House by Gerrit Reitveld R. Tugendhat House by Mies van der Rohe T. Villa Savoye by Le Corbusier (A) P, Q, R, T (B) P, S (C) Q, S, T (D) Q, R, T
65.	Tactile flooring with guiding blocks, an element of Barrier Free Design, is used to aid P. ambulant disabled Q. non-ambulant disabled R. partially sighted S. totally blind (A) P, Q, S (B) P, Q, R (C) R, S (D) Q, S
66.	Match the characteristics of vaults in Group I with their names in Group II.Group IGroup IIP.Uniform semi-circular cross section1.Q.Semi-circular cross section larger at one end than the other2.R.Compound vault formed by four coves meeting along diagonal vertical3.Date:ConicalS.4.Group5.Rampant6.Stilted(A)P - 1, Q - 6, R - 5, S - 2(C)P - 4, Q - 5, R - 2, S - 6(D)P - 1, Q - 3, R - 4, S - 2
67.	A 60° segmental arch is provided over a door of 1.0 m width. The wall thickness is 30 cm and the arch thickness is 20 cm. the mean length of the arch in metres is (A) 1.00 (B) 1.15 (C) 1.20 (D) 1.30
68.	 Match the statements about elevators & escalators in Group I with True/False in Group II. Group I P. Handling capacity of elevators for residential buildings as per Indian P. Handling capacity of elevators for residential buildings as per Indian Q. Minimum height from the top floor to the bottom of the lift machine room Q. Minimum width for escalators as per Indian standards is 1,000 mm S. Recommended angle with the horizontal for escalators is 30° (A) P - 1, Q - 2, R - 1, S - 2 (B) P - 2, Q - 2, R - 2, S - 1 (C) P - 2, Q - 1, R - 1, S - 1 (D) P - 1, Q - 2, R - 2, S - 1

Published by: <u>http://www.questionpapers.net.in/</u>

- 69. The slenderness ratio for a cantilever prismatic column of length L with a circular cross section having radius r is

 (A) L / r
 (B) 2L / r
 (C) 3L / r
 (D) 4L / r
- 70. Match the designers in Group I with the terms in Group II Group I Group II

Ρ.	Max Dubois	1. Prefabrication
Q.	Joseph Paxton	2. Domino System
R.	Victor Horta	3. Minimalism
		4. Vegetal Ornamentation
(A)	P – 2, Q – 1, R – 4	(B) P – 4, Q – 1, R – 3
(C)	P – 2, Q – 4, R – 3	(D) P – 1, Q – 3, R – 4

Common Data Questions

follows:

Common Data for Questions 71, 72, 73:

The cont	tinuous ut	ility data	a for a construction project	is as
Activity	During (days)	Immediate Predecessors	
	Normal	Crash		
Р	3	3	-	
Q	4	4	Р	BI
R	2	1	Р	
S	2	1	Р	
S	3	3	Р	
Т	0	0	Q 2	
U	6	5	R, T	
V	4	2	S	DI

- 71.The normal project time for the given network is
(A) 11(B) 12(C) 13(D) 14
- 72. For the all-normal solution, the total float and free float for the activity s are (A) 1, 1 (B) 0, 3 (C) 3, 3 (D) 3, 0
- 73. While crashing the project, the first step of compression would involve the activity (A) R (B) U (C) T (D) V

Common Data for Questions 74, 75:

A room measuring 10 m \times 10 m has to be illuminated to a level of 200 lux by a single electric lamp. The coefficient of utilization is 0.75 and the maintenance factor is 0.8.

i ne it	imen output re	equired for	the above	e lamp is			
(A)	12.000	(B)	16.666	(C)	30.000	(D)	33,333
()		(-)				(-)	
Tho d	oprociation fac	tor for the	abovo lar	nn is			
THE U	epreciation rac			TIP 13			
(A)	0.6	(B)	1.25	(C)	1.33	(D)	1.66
. ,		~ /				• • •	
	(A) The d	(A) 12,000 The depreciation fac	(A) 12,000 (B) The depreciation factor for the	(A) 12,000 (B) 16,666 The depreciation factor for the above lar	(A) 12,000 (B) 16,666 (C) The depreciation factor for the above lamp is	(A) 12,000 (B) 16,666 (C) 30,000 The depreciation factor for the above lamp is	The depreciation factor for the above lamp is

Linked Answer Questions: Q. 76 to Q. 85 carry two marks each. Statement for Linked Answer Questions 76 & 77:

The following data is related to the design of a septic tank for a housing complex:											
Population of housing complex = 150											
Water supply / person / day = 130 litres											
Waste water flow = 80% of water supply											
Detention period = 1 day											
Sludge production = 0.045 cu.m / person / year											
Storage capacity for sludge = 1/3 rd of septic tank capacity											
76.	76. Total capacity of septic tank in cubic metres is										
	(A)	31.70	(B)	23.40	(C)	20.80	(D)	15.60			
77.	7. De-sludging interval (to the nearest year) is										
	(A)	1	(B)	2	(C)	3	(D)	4			

Statement for Linked Answer Questions 78 & 79: A residential plot measuring 12 metres × 15 metres abuts a road on its smaller side. Permissible ground coverage = 50 %, floor Space Index (FSI) = 2.5 and maximum permissible floors = 4 78. maximum total buildable area in sq. m is									
70.	(A)	180	(B)	225		(C)	360	(D)	450
79.		revised building ar 2 metres, the increase by 24 decrease by 30	n the ma 8 sq. m					sq. m	each Side 2 metres
 Statement for Linked Answer Questions 80 & 81 A aerial photograph is taken from a plane with a camera lens of focal length 308 mm. the desired scale of the photograph is 1:25,000 and the height of the terrain above mean sea level is 300 metres. 80. The flying height of the plane above mean sea level is 									
	(A)	7,625	(B)	7,925	Ð	(C)	8,562	(D)	8,965
81.	81. If the above photograph is taken by a camera lens of focal length 210 mm from the same flying height, then the scale of the photograph will be								
	(A)	1: 45,000	(B)	1:37,74		(C)	1:36,310	(D)	1 : 19,050
Statement for Linked Answer Questions 82 & 83: A beam of cross section 300 mm × 400 mm has overhangs at both ends. The beam has a simple support of 10 metres and an overhang of 5 metres each at both ends and carrying a load of 10 kN on both the free ends.									
82.	The ma (A)	aximum values c 5 kN, 50 kN-m	f shear f	force and l	bending	g mome (B)	nt in the beam a 20 kN, 80 kN-n		
	(A) (C)	15 kN, 45 kN-n	n			(D)	10 kN, 50 kN-n		
83.	The ma (A)	aximum values o 5.15, 0.1	f bendin (B)	g stress a 6.25, 0.1			developed in th 7.35, 0.15	ie beam (D)	in N/mm ² are 8.45, 0.175
Statom	. ,	Linked Answer Q	~ /		\mathbf{O}	(0)	7.55, 0.15		0.43, 0.173
An aud	itorium l	has a volume of	3000 m ³	³ with opti			ation time of 0.8		
84.	The so (A)	und absorption p 250	ower re (B)	400	the aud	(C)	in m ² -sabins is a 600	approxim (D)	800
85.	During a convocation programme in the same auditorium, the absorption power increases by 200 m ² -sabins. The reverberation time in seconds will now be								increases by 200 m ² -
	(A)	0.4	(B)	0.6		(C)	0.8	(D)	1.2
End of Question Paper									