1 - 2				
1	In a compiler, keywords of a language a	re recognized during		Answer: (C)
	(A) parsing of the program			
	(B) the code generation			
	(C) the lexical analysis of the program			
	(D) dataflow analysis			
2	A layer-4 firewall (a device that can look at all protocol headers up to the transpo layer) CANNOT			Answer: (A)
	(A) block entire HTTP traffic during 9:00	PM and 5 :00AM		
	(B) block all ICMP traffic	O		
	(C) stop incoming traffic from a specific same IP address	IP address but allow out	going traffic to the	
	(D) block TCP traffic from a specific user 5:00AM	on a multi-user system	during 9:00PM and	
3	If two fair coins are flipped and at least head, what is the probability that both o		nown to be a	Answer: (A)
	(A) 1/3 (B) 1/4			
	(C) 1/2 (D) 2/3			
4	Consider different activities related to en	Answer: (C)		
	m1: Send an email from a mail client to			
	m2: Download an email from mailbox se			
	m3: Checking email in a web browser	Ř		
	Which is the application level protocol us			
	(A) ml: HTTP m2: SMTP m3: POP			
	(B) ml: SMTP m2: FTP m3: HTTP			
	(C) ml: SMTP m2: POP m3: HTTP			
	(D) ml: POP m2: SMTP m3: IMAP			
5	A company needs to develop a strategy which it has a choice of two programmin lines of code (LOC) developed using L2 i with LI. The product will have to be main for the company are given in the table b	Answer: (B)		
	Parameter	Language L1	Language L2	
	Man years needed for development	LOC/10000	LOC/10000	
	Development cost per man year	Rs. 10,00,000	Rs. 7,50,000	
	Maintenance time	5 years	5 years	
	Cost of maintenance per year	Rs. 1,00,000	Rs. 50,000	

	Total cost of the project includes cost of development and the LOC for L1 for which the cost of the project using L1 project using L2?		
	(A) 4000 (B) 5000		
	(C) 4333 (D) 4667		
6	Let the time taken to switch between user and kernel mo while the time taken to switch between two processes be is TRUE?		Answer: (C)
	(A) $t_1 > t_2$		
	(B) $t_1 = t_2$		
	(C) $t_1 < t_2$		
	(D) nothing can be said about the relation betweent $_1$ and	t ₂	
7	A company needs to develop digital signal processing sof inventions. The software is expected to have 40000 lines needs to determine the effort in person-months needed t using the basic COCOMO model. The multiplicative factor 2.8 for the software development on embedded systems, factor is given as 1.20. What is the estimated effort in pe (A) 234.25 (B) 932.50	of code. The company o develop this software for this model is given as while the exponentiation	Answer: (A)
	(C) 287.80 (D) 122.40		
8	Which of the following pairs have DIFFERENT expressive		Answer: (B)
	(A) Deterministic finite automata (DFA) and Non-determ (NFA)	inistic finite automata	
	(B) Deterministic push down automata (DPDA) and Non-o automata (NPDA)	deterministic push down	
	(C) Deterministic single-tape Turing machine and Non-de Turing machine	terministic single-tape	
	(D) Single-tape Turing machine and multi-tape Turing ma	ichine	
9	HTML (HyperText Markup Language) has language eleme actions other than describing the structure of the web do following actions is NOT supported by pure HTML (withou scripting) pages?	cument. Which one of the	Answer: (D)
	(A) Embed web objects from different sites into the same	page	
	(B) Refresh the page automatically after a specified interv	/al	
	(C) Automatically redirect to another page upon downloa	d	
	(D) Display the client time as part of the page		
10	Which one of the following is NOT desired in a good Soft Specifications (SRS) document'?	ware Requirement	Answer: (D)
	(A) Functional Requirements		
	(B) Non-Functional Requirements		
	(C) Goals of Implementation		
	(D) Algorithms for Software Implementation		

11	A computer handles several interrupt sources of which the following are relevant for this question.	Answer: (D)
	Interrupt from CPU temperature sensor (raises interrupt if CPU temperature is too high)	
	 Interrupt from Mouse (raises interrupt if the mouse is moved or a button is pressed) 	
	 Interrupt from Keyboard (raises interrupt when a key is pressed or released) 	
	 Interrupt from Hard Disk (raises interrupt when a disk read is completed) 	
	Which one of these will be handled at the HIGHEST priority?	
	(A) Interrupt from Hard Disk	
	(B) Interrupt from Mouse	
	(C) Interrupt from Keyboard	
	(D) Interrupt from CPU temperature sensor	
12	Consider a relational table with a single record for each registered student with the following attributes.	Answer: (A)
	1. Registration_Num: Unique registration number of each registered student	
	2. UID: Unique identity number, unique at the national level for each citizen	
	3. BdnkAccount_Num: Unique account number at the bank. A student can have multiple accounts or joint accounts. This attribute stores the primary account number.	
	4. Name: Name of the student	
	5. Hoszel_Room: Room number of the hostel	
	Which of the following options is INCORRECT?	
	(A) BankAccount_Num is a candidate key	
	(B) Registration_Num can be a primary key	
	(C) UID is a candidate key if all students are from the same country	
	(D) If S is a superkey such that that S N UID is NULL then S U UID is also a	
	superkey	
13	Which one of the following circuits is NOT equivalent to a 2-input XNOR (exclusive	Answer: (D)
	NOR) gate?	
	(A) (B)	

14	The simplified SOP (Sum of Product) form of	the Boolean expression	Answer: (B)
	$(P + \overline{Q} + \overline{R}) \cdot (P + \overline{Q} + \overline{R}) \cdot (P + Q + \overline{R})$ is		
		$\left(P+\overline{Q}\cdot\overline{R}\right)$	
		$(\mathbf{P} \cdot \mathbf{Q} + \mathbf{R})$	
	$(C) (P \cdot Q + R) $ (D)	$(\mathbf{P} \cdot \mathbf{Q} + \mathbf{R})$	
15	The minimum number of D flip—flops needed	d to design a mod-258 counter is	Answer: (A)
	(A) 9 (B) 8		
	(C) 512 (D)	258	
16	A thread is usually defined as a "light weight (OS) maintains	process" because an operating system	Answer: (A)
	smaller data structures for a thread than for the following is TRUE?	a process. In relation to this, which of	
	(A) On per-thread basis, the OS maintains or	nly CPU register state	
	(B) The OS does not maintain a separate star		
	(C) On per-thread basis, the OS does not ma	intain virtual memory state	
	(D) On per-thread basis, the OS maintains or information	nly scheduling and accounting	
17	K4 and Q3 are graphs with the following stru	ctures.	Answer: (B)
	Which one of the following statements is TRU (A) K4 is planar while Q3 is not (B)		
	(C) Q3 is planar while K3 is not (D)	Neither K4 nor Q3 is planar	
18			Answer: (C)
19	The lexical analysis for a modem computer la of which one of the following machine model		Answer: (A)
	(A) Finite state automata		
	(B) Deterministic pushdown automata		
	(C) Non-deterministic pushdown automata		
	(D) Turing machine		

20	Let the page fault service time be 10 ms access time being 20 ns. If one page fau accesses, what is the effective access time	ult is generated for every 10 ⁶ memory	Answer: (B)
	(A) 21 ns	(B) 30 ns	
	(C) 23 ns	(D) 35 ns	
21	register R1. The effective address of the addition of a constant 20 and the content	ord from memory and stores it in a 32-bit	Answer: (D)
	(A) Immediate Addressing	(B) Register Addressing	
	(C) Register Indirect Scaled Addressing	(D) Base Indexed Addressing	
22	What does the following fragment of C Char c [] = "GATE2011";	program print?	Answer: (C)
	char *p = c; printf $<$ "9(S" p $<$ p[2] p[1]);		
	printf <"%S", p + p[3] — p[1]):	(P) F2011	
	(A) GATE2011	(B) E2011	
	(C) 2011	(D) 011	
23	the value of its children. Which of the fo	of each parent is greater than or equal to ollowing is a max-heap?	Answer: (B)
	(A)	(B)	
	\square	$\boldsymbol{\times}$	
	8	(e) (e)	
	(4) (5) (2)	(4) (5) (1) (2)	
	(1)		
	(C)	(D)	
		5	
	5 6		
	XX	XŘ	
L	<u> </u>		I

Page 5 of 18

24		
24	Let P be a regular language and Q be a context-free language such that $Q \subseteq P$. (For example, let P be the language represented by the regular expression $p^* q^*$ and Q be { $p^{"} q^{"} n \in N$ }). Then which of the following is ALWAYS regular?	Answer: (C)
	$(A) P \cap Q$	
	(B) P – Q	
	(C) $\Sigma^* - P$	
	(D) $\Sigma^* - Q$	
25	An algorithm to find the length of the longest monotonically increasing sequence of numbers in an array A[O : $n - 1$] is given below.	Answer: (A)
	Let L _i denote the length of the longest monotonically increasing sequence starting at index i in the array.	
	Initialize $L_{n-1} = 1$.	
	For all i such that $0 \le i \le n - 2$	
	$L_{i} = \begin{cases} 1+L_{i+1} & ifA[i] < A[i+1] \\ 1 & Otherwise \end{cases}$	
	Finally the length of the longest monotonically increasing sequence is Max (L_0 , L_1 ,, L_{n-1}).	
	Which of the following statements is TRUE?	
	(A) The algorithm uses dynamic programming paradigm	
	(B) The algorithm has a linear complexity and uses branch and bound paradigm	
	(C) The algorithm has a non-linear polynomial complexity and uses branch and	
	bound paradigm	
	(D) The algorithm uses divide and conquer paradigm.	
26 t	to 55 carry two marks each.	
26 t 26	Consider the languages L1. L2 and L3 as given below.	Answer: (C)
		Answer: (C)
	Consider the languages L1. L2 and L3 as given below.	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$,	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE?	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)
	Consider the languages L1. L2 and L3 as given below. L1= $\{0^p \ 1^q \mid p, q \in N\}$, L2= $\{0^p \ 1^q \mid p, q \in N \text{ and } p = q\}$ and L3 = $\{0^p \ 1^q \ 0^r \mid p, q, r \in N \text{ and } p = q = r\}$. Which of the following statements is NOT TRUE? (A) Push Down Automata (PDA) can be used to recognize L1 and L2 (B) L1 is a regular language (C) All the three languages are context free	Answer: (C)

27	Consider two binary operators ' \uparrow ' and ' \downarrow ' with the precedence of operator \downarrow being lower than that of the operator \uparrow . Operator \uparrow is right associative while operator \downarrow is left associative. Which one of the following represents the parse tree for expression (7 \downarrow 3 \uparrow 4 \uparrow 3 \downarrow 2)?	Answer:	(B)
	(A) (A) (B) (B) (B) (B) (C		
	(C) (1		
28	On a non-pipelined sequential processor, a program segment, which is a part of the interrupt service	Answer:	(A)
	routine, is given to transfer 500 bytes from an I/O device to memory.		
	Initialize the address register		
	Initialize the count to 500		
	LOOP: Load a byte from device		
	Store in memory at address given by address register		
	Increment the address register		
	Decrement the count		
	If count != 0 go to LOOP		
	Assume that each statement in this program is equivalent to a machine instruction which takes one clock cycle to execute if it is a non-load/store instruction. The load-store instructions take two clock cycles to execute.		
28 On a non-pipelined sequential processor, a program segment, which is a part of the interrupt service routine, is given to transfer 500 bytes from an 1/O device to memory. Initialize the address register Initialize the count to 500 LOOP: Load a byte from device Store in memory at address given by address register Increment the address register Decrement the count If count != 0 go to LOOP Assume that each statement in this program is equivalent to a machine instruction which takes one clock cycle to execute if it is a non-load/store instruction. The			

	(A) 3.4	
	(B) 4.4	
	(C) 5.1	
	(D) 6.7	
29	We are given a set of n distinct elements and an unlabeled binary tree with n nodes. In how many ways can we populate the tree with the given set so that it becomes a binary search tree? (A) 0	Answer: (D)
	(B) 1	
	(C) n!	
	(D) $\frac{1}{n+1} \cdot {}^{2n} C_n$	
	n+1 "	
30	Which one of the following options is CORRECT given three positive integers x , y and z , and a predicate	Answer: (A)
	$P(x) = -, (x=1) \land \forall y (\exists z(x=y^*z) \Longrightarrow (y=x) v(y=1))$	
	(A) P(x) being true means that x is a prime number	
	(B) P(x) being true means that x is a number other than 1	
	(C) P(x) is always true irrespective of the value of x	
	(D) P(x) being true means that x has exactly two factors other than 1 and x	
31	Given $i = \sqrt{-1}$, what will be the evaluation of the definite integral	Answer: (D)
	π/2	
	$\int_{0}^{\infty} \frac{\cos x + i \sin x}{\cos x - i \sin x} dx ?$	
	(A) 0	
	(B) 2	
	(C) –i	
	(D) i	
32	Consider a database table T containing two columns X and Y each of type integer. After the creation of the table, one record $(X=1, Y=1)$ is inserted in the table.	Answer: (A)
	Let MX and MY denote the respective maximum values of X and Y among all records in the table at any point in time. Using MX and MY, new records are inserted in the table 128 times with X and Y values being MX+1, 2*MY+1 respectively. It may be noted that each time after the insertion, values of MX and MY change.	
	What will be the output of the following SQL query after the steps mentioned above are carried out?	
	SELECT Y FROM T WHERE X=7;	
	(A) 127	
	(B) 255	
	(C) 129	
	(D) 257	
L		1

33	and σ_x be the mean of the second	the standard devia from this as y _i = a	tion of X. Let a a * x _i + b, whe tandard deviat	es $X = [x_1, x_2,, x_n]$. Let μ_x be the mean another finite sequence Y of equal length ere a and b are positive constants. Let μ_y ion of this sequence. Which one of the	Answer: (D)
	(A) Index position of mode of X in X is the same as the index position of mode of Y in Y.				
	(B) Index of Y in Y	position of median	of X in X is th	e same as the index position of median	
	(C) µ _y = aµ	u _x + b			
	(D) $\sigma_y = a \sigma$	₅ _x + b		\sim	
34	thoroughly probability	. Two cards are th	en removed o are selected	number from 1 to 5) is shuffled ne at a time from the deck. What is the with the number on the first card being card?	Answer: (A)
	(A) 1/3 (B) 4/25				
	(C) 1/4			Õ	
	(D) 2/5				
35	Consider th P1 and P2.		of arrival time	and burst time for three processes P0,	Answer: (A)
	Process	Arrival time	Burst Time		
	P0	0 ms	9 ms	S	
	P1	1 ms	4 ms	0	
	P2	2 ms	9 ms		
	carried out		completion of	ng algorithm is used. Scheduling is processes. What is the average waiting	
	(A) 5.0 ms			\geq	
	(B) 4.33 m	IS			
	(C) 6.33 m	IS			
	(D) 7.33 m	IS			
36	architectur instruction operators of the operan no interme	e in which memory s. The variables a, used in this expres ads are in registers	y can be acces b, c, d and e sion tree can l . The instruction e stored in me	on tree on a machine with load-store used only through load and store are initially stored in memory. The binary be evaluated by the machine only when ons produce result only in a register. If emory, what is the minimum number of n?	Answer: (D)
				htt	

	e e e e e e e e e e e e e e e e e e e	
	(A) 2	
	(B) 9	
	(C) 5	
	(D) 3	
27		
37	Which of the given options provides the increasing order of asymptotic complexity of functions f_1 , f_2 , f_3 , and f_4 ?	Answer: (A)
	$f_1(n) = 2^n$ $f_2(n) = n^{3/2}$ $f_3(n) = n \log_2 n$ $f_4(n) = n^{\log_2 n}$	
	(A) f_3 , f_2 , f_4 , f_1 (B) f_3 , f_2 , f_1 , f_4	
	(C) f_2 , f_3 , f_1 , f_4 (D) f_2 , f_1 , f_4 , f_1	
38	Four matrices M_1 , M_2 , M_3 and M_4 , of dimensions $p \times q$, $q \times r$, $r \times s$ and $s \times t$ respectively can be multiplied in several ways with different number of total scalar multiplications. For example when multiplied as $((M_1 \times M_2) \times (M_3 \times M_4))$. The total number of scalar multiplications is pqr + rst + prt. When multiplied as $(((M1 \times M2) \times M3) \times M4,))$, the total number of scalar multiplications is pqr + prs + pst.	Answer: (C)
	If $p = 10$, $q = 100$, $r = 20$, $s = 5$, and $t = 80$, then the minimum number of scalar multiplications needed is	
	(A) 248000 (B) 44000	
	(C) 19000 (D) 25000	
Q∙3 9	Consider a relational table r with sufficient number of records, having attributes A_1 , A_2 ,, A_n and	Answer: (C)
	let $1 \le p \le n$. Two queries Q1 and Q2 are given below.	
	Q1: $\pi_{A_{1,,A_{p}}}(\sigma_{A_{p}=c}(r))$ where c is a constant	
	Q2: $\pi_{A_{1,,A_{p}}}(\sigma_{c_{1} \leq A_{p} \leq c_{2}}(r))$ where c_{1} and c_{2} are constants	
	The database can be configured to do ordered indexing on A_p or hashing on A_p . Which of the following statements is TRUE?	
	(A) Ordered indexing will always outperform hashing for both queries	
	(B) Hashing will always outperform ordered indexing for both queries	
	(C) Hashing will outperform ordered indexing on Q1, but not on Q2	
	(D) Hashing will outperform ordered indexing on Q2, but not on Q1	

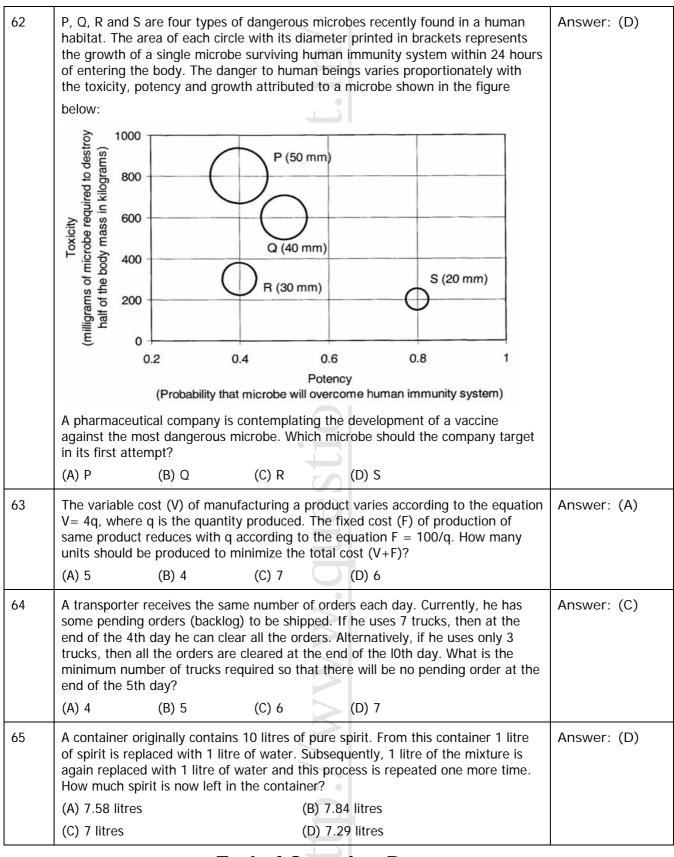
Page 10 of 18

40	Consider the matrix as given below.	Answer: (A)
	Which one of the following options provides the CORRECT values of the	
	eigenvalues of the matrix?	
	(A) 1, 4, 3 (B) 3, 7, 3 (C) 7, 2, 2	
	(C) 7, 3, 2 (D) 1,2,3	
41	Consider an instruction pipeline with four stages (S1, S2, S3 and S4) each with combinational circuit only. The pipeline registers are required between each stage and at the end of the last stage.	Answer: (B)
	Delays for the stages and for the pipeline registers are as given in the figure.	
	Pipeline Register (Delay Ins) Sug Sug Sug Sug Sug Sug Sug Sug	
	What is the approximate speed up of the pipeline in steady state under ideal conditions when compared to the corresponding non-pipeline implementation?	
	(A) 4.0 (B) 2.5	
	(C) 1.1 (D) 3.0	
42	Definition of a language L with alphabet {a} is given as following.	Answer: (B)
	$L = \{a^{nk} k > 0, and n is a positive integer constant\}$	
	What is the minimum number of states needed in a DFA to recognize L?	
	(A) k+1 (B) n + 1	
	(C) 2^{n+1} (D) 2^{k+1}	
43	An 8KB direct-mapped write-back cache is organized as multiple blocks, each of size 32-bytes. The processor generates 32-bit addresses. The cache controller maintains the tag information for each cache block comprising of the following.	Answer: (D)
	1 Valid bit	
	1 Modified bit	
	As many bits as the minimum needed to identify the memory block mapped in the cache.	
	What is the total size of memory needed at the cache controller to store meta-data (tags) for the cache?	
	(A) 4864 bits (B) 6144 bits	
	(C) 6656 bits (D) 5376 bits	

44	An application loads	: 100 libraries at star	tup. Loading each library requires exactly	Answer: (B)
	one disk access.	tup. Loading cach ibrary requires exactly		
	The seek time of the of disk is 6000 rpm. disk, how long does disk block once the neglected.)			
	(A) 0.50 s			
	(B) 1.50 s			
	(C) 1.25 s			
	(D) 1.00 s		\sim	
45		a, b a, b a a, b a a, b a a, b a a, b a a, b a a, b a a, b a	D with alphabet X $\Sigma = \{a, b\}$ is given below. ines is a valid minimal DFA which accepts (B) (D) (D) (D) (D) (D) (D) (D) (D	Answer: (A)
46	Database table by n	ame Loan_Records i	is given below.	Answer: (C)
	Borrower	Bank_Manager	Loan_Amount	
	Ramesh	Sunderajan	10000.00	
	Suresh	Ramgopal	5000.00	
	Mahesh	Sunderajan	7000.00	
		of the following SQL		

Page 12 of 18

	FROM (
	(SELECT Borrower, Bank_Manager FROM Loan_Records) AS S	
	NATURAL JOIN	
	(SELECT Bank_Manager, Loan_Amount FROM Loan_Records) AS T	
);	
	(A) 3 (B) 9	
	(C) 5 (D) 6	
47	The following is the comment written for a C function.	Answer: (C)
	/* This function computes the roots of a quadratic equation	
	$a.x^2 + b.x + c = 0$. The function stores two real roots	
	in *root1 and *root2 and returns the status of validity	
	of roots. It handles four different kinds of cases.	
	(i) When coefficient a is zero irrespective of discriminant	
	(ii) When discriminant is positive	
	(iii) When discriminant is zero	
	(iv) When discriminant is negative.	
	Only in case (ii) and (iii), the stored roots are valid.	
	Otherwise 0 is stored in the roots. The function returns	
	0 when the roots are valid and -1 otherwise.	
	The function also ensures root1 $>$ = root2.	
	Ţ	
	int get_QuadRoots (float a, float b, float c,	
	float *root1, float *root2);	
	*/	
	A software test engineer is assigned the job of doing black box testing. He comes up with the following test cases, many of which are redundant.	
	Input set Expected Output set	
	Test Return Case a b c Root1 Root2 Value	
	Case a b c Root1 Root2 Value T1 0.0 0.0 7.0 0.0 0.0 -1	
	T2 0.0 1.0 3.0 0.0 0.0 -1	
	T3 1.0 2.0 1.0 -1.0 -1.0 0	
	T4 4.0 -12.0 9.0 1.5 1.5 0 T5 1.0 -2.0 -3.0 3.0 -1.0 0	
	T6 1.0 1.0 4.0 0.0 0.0 -1	
	Which one of the following options provide the set of non-redundant tests using	
	equivalence class partitioning approach from input perspective for black box testing?	
	(A) T1, T2, T3, T6	
	(B) T1, T3, T4, T5	
	(C) T2, T4, T5, T6	
	(D) T2, T3, T4, T5	
		l


5, 10)? Answer: (B)
(D)
3 , 2) ? Answer: (D)
ype of
R have a Answer: (D)
clock
F

51	If all the flip-flops were reset to 0 at power on, what is the total number of distinct outputs (states) represented by PQR generated by the counter?	Answer: (B)
	(A) 3	
	(B) 4	
	(C) 5	
	(D) 6	
	Linked Answer Questions	
	Statement for Linked Answer Questions 52 and 53:	
	Consider a network with five nodes, N1 to N5, as shown below.	
	N5 3 $N2$ $N5$ 4 6 0 $N3$ $N4$ 2 $N3$	
	The network uses a Distance Vector Routing protocol. Once the routes have stabilized, the distance vectors	
	at different nodes are as following.	
	N1:(0,1, 7, 8, 4)	
	N2: (1, 0, 6, 7, 3)	
	N3: (7, 6, 0, 2, 6)	
	N4: (8,7, 2,0,4)	
	N5: (4, 3, 6, 4, 0)	
	Each distance vector is the distance of the best known path at that instance to nodes, N1 to N5, where the distance to itself is O. Also, all links are symmetric and the cost is identical in both directions. In each round, all nodes exchange their distance vectors with their respective neighbors. Then all nodes update their distance vectors. In between two rounds, any change in cost of a link will cause the two incident nodes to change only that entry in their distance vectors.	
52	The cost of link N2-N3 reduces to 2 (in both directions). After the next round of updates, what will be the new distance vector at node, N3?	Answer: (A)
	(A) (3, 2, 0, 2, 5)	
	(B) (3, 2, 0, 2, 6)	
	(C) (7, 2, 0, 2, 5)	
	(D) (7, 2, 0, 2, 6)	

53	After the update in the previous question, the link N1-N2 goes down. N2 will reflect this change immediately in its distance vector as cost, ∞ . After the NEXT ROUND of update, what will be the cost to N1 in the distance vector of N3? (A) 3	Answer: (C)
	(B) 9	
	(C) 10	
	(D) ∞	
Stater	nent for Linked Answer Questions 54 and 55:	
v _j are c	irected graph G(V,E) contains n (n > 2) nodes named $v_1, v_2,, v_n$. Two nodes v_i , connected if and only if $0 < i - j \le 2$. Each edge (v_i, v_j) is assigned a weight i +j. ble graph with n = 4 is shown below.	
	$ \begin{array}{c} \sqrt{3} & 7 \\ \sqrt{3} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} \\ $	
54	What will be the cost of the minimum spanning tree (MST) of such a graph with n nodes?	Answer: (B)
	(A) $\frac{1}{12}$ (11 n ² -5 n)	
	(B) $n^2 - n + 1$	
	(C) 6n –11	
	(D) 2n +1	
55	The length of the path from v_5 to v_6 in the MST of previous question with $n = 10$ is	Answer: (C)
	(A) 11	
	(B) 25	
	(C) 31	
	(D) 41	
Gener	al Aptitude (GA) Questions	1
56 —	60 carry one mark each.	
56	Which of the following options is the closest in the meaning to the word below:	Answer: (A)
	Inexplicable	
	(A) Incomprehensible	
	(B) Indelible	
	(C) Inextricable	
	(D) Infallible	
1		1

57	If Log (P) = $(1/2)$ Log (Q) = $(1/3)$ Log (R), then which of the following options is TRUE?	Answer: (B)
	(A) $P^2 = Q^3 R^2$	
	(B) $O^2 = PR$	
	(C) $Q^3 = R^3 P$	
	(D) $R = P^2 Q^2$	
58	Chaose the most engrapricte word(c) from the entions given below to complete	
20	Choose the most appropriate word(s) from the options given below to complete the following sentence.	Answer: (C)
	I contemplated ————————————————————————————————————	
	against it.	
	(A) to visit	
	(B) having to visit	
	(C) visiting	
	(D) for a visit	
59	Choose the most appropriate word from the options given below to complete the following sentence.	Answer: (B)
	If you arc trying to make a strong impression on your audience, you cannot do so by being understated, tentative or	
	(A) hyperbolic	
	(B) restrained	
	(C) argumentative	
	(D) indifferent	
60	Choose the word from the options given below that is most nearly opposite in meaning to the given word: Amalgamate	Answer: (B)
	(A) merge	
	(B) split	
	(C) collect	
	(D) separate	
61 to	65 carry two marks each.	
61	Few school curricula include a unit on how to deal with bereavement and grief, and yet all students at some point in their lives suffer from losses through death and parting.	Answer: (C)
	Based on the above passage which topic would not be included in a unit on bereavement?	
	(A) how to write a letter of condolence	
	(B) what emotional stages are passed through in the healing process	
	(C) what the leading causes of death are	
	(D) how to give support to a grieving friend	
1		

End of Question Papers