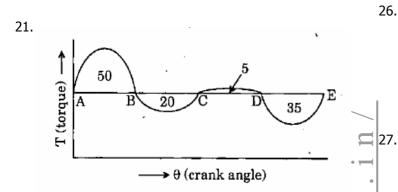
Publish	ed by: <u>http://www.questionpapers.net.in/</u>		UPSC Examination: (Civil Service) question papers
	Civil Service Examination: Mechar	nical Er	ngineering question paper 2009
1.	Which one of the following can be completely represent a force graphically?		(a) $\frac{\alpha TE}{4}$
	(a) Magnitude, time of application and direction		(b) $\frac{\alpha TE}{2}$
	(b) Time of application, point of application and direction		(c) $\alpha T E$
	(c) Point of application, direction and magnitude		(d) Zero
	(d) Magnitude, time of application and point of application	с С 6. • С 6.	If material has numerically the same values for its modulus of rigidity and bulk modulus, then what is its Poisson's ratio?
2.	The x - y plane is the plane of a couple of 25	•	(a) 0.25
	Nm magnitude and \hat{i} , \hat{j} , \hat{k} are unit vectors		(b) 0.2
	along x, y and z directions respectively. Which one of the following represents the couple	ne	(c) 0.15 (d) 0.125
	vector?	• 7.	A simply supported beam of span L and flexural
	(a) $\frac{25}{12}\hat{i} + \frac{25}{12}\hat{j}$	\sim	rigidity EI carries a unit point load at its centre. What is the strain energy in the beam due to
	(b) 25 î Nm	5	bending?
	(c) 25 ĵ Nm	O	(a) $\frac{L^3}{L^3}$
	(d) 25 k̂ Nm	0	1661
3.	A particle is projected vertically upward with an	[D	(b) $\frac{L^3}{48EI}$
5.	initial velocity u. If g is the acceleration due to gravity, then which one of the following is the	d u	(c) $\frac{L^3}{96EI}$
	greatest height h attained by it?		L^3
	(a) $h = \frac{2u^2}{g}$ (b) $h = \frac{u^2}{g}$	0	(d) $\frac{L}{192EI}$
	g	– 8.	Consider the following statements, in connection with a metallic rod of a circular section being
	(c) $h = \frac{1}{2} \frac{u^2}{g}$	O	subjected to equal and opposite torque T within elastic limit:
	(d) $h = \frac{1}{4} \frac{u^2}{g}$	n	1. The transverse section of the rod does not experience warping.
	(d) 11 4 g	D	 The diameter of rod does not alter. Angle of relative twist between two
4.	Consider the following statements in the case of	•	sections is proportional to the lengths
	perfectly plastic impact of two particles:	\geq	between these sections.A surface element of the rod is under
	 There is no period of restitution. Both the particles are together after 	\geq	pure shear state of stress.
	impact.		Which of these statements are correct?
	3. Total momentum of the particles is	\geq	(a) 1 and 2 only (b) 1, 2 and 3 only
	conserved.4. Kinetic energy of the particles is		(c) 2 and 3 only
	4. Kinetic energy of the particles is conserved.		(d) 2, 3 and 4 only
	Which of these statements are correct?	• • 9.	Which one of the following is true for torsional
	(a) 1 and 2 only (b) 1, 2 and 3 only		shear stress at the axis of a circular shaft?
	(c) 2 and 3 only		(a) Minimum
	(d) 2, 3 and 4		(b) Maximum
_			(c) Negative (d) Zero
5.	A free bar of length is heated uniformly from 0° C to a temperature T° C. α is the coefficient of		(d) Zero
	linear expansion and E is the modulus of	10.	Which on e of the following is the correct,
	elasticity. Which one of the following is the		expression for hoop stress, if P is internal
	stress induced in the bar?		pressure in a thin walled cylinder of diameter d and thickness t?

Page 1 of 12

-	. <u>Intp://www.questionpapers.net.in/</u>		OFSC Examination. (Civil Service) question papers
0	Civil Service Examination: Mechar	nical Eng	ineering question paper 2009
(a) (b) (c) (d)	$\frac{pd}{t}$ $\frac{pd}{2t}$ $\frac{pd}{4t}$ $\frac{pd}{8t}$	15.	 By inversion of which one of the following can a Whitworth quick return mechanism be obtained? (a) Four bar chain only (b) Single slider crank chain only (c) Both four bar chain and single slider crank chain (d) Neither four bar chain nor single slider crank chain
thir inte 1. 2. 3. 4.	 nsider the following statements in respect of a cylindrical pressure vessels subjected to ernal fluid pressure: State of stress along the vessel thickness is biaxial except in the inside surface. Circumferential stress is twice the magnitude of longitudinal stress. Hoop stress and longitudinal stress remain constant along the vessel thickness. Circumferential welded seam is likely to be weaker as compared to longitudinal seam. ich of these statements are correct? 1 and 2 only 1, 2 and 3 only 2 and 3 only 	16. 17. 17. 17. 17. 18.	 Which one of the following holds true for a quadric cycle chain? (a) Each of the four pairs is a turning pair (b) One is a turning pair and three are sliding pairs (c) Three turning pairs and one sliding pair (d) Each of the four pairs is a sliding pair Which one of the following refers to miter gears? (a) Spur gears of equal diameter and pitch (b) Helical gears having same pitch (c) Gears having different modules (d) Right-angled bevel gears having the same number of teeth Match List I with List II and select the correct answer using the code given below the lists: List I List II Type of gears
	ich one of the following columns gas ective length twice the value of actual length Hinged-Hinged column Fixed-Fixed column Fixed-Hinged column Fixed-Free column	u e s t i	 A. Herringbone gears B. Worm gears C. Helical gears D. Hypoid gears Code:
diai the	4 P 8 P		ABCD(a)3241(b)1243(c)3421(d)1423Which one of the following is true regarding the fatigue life of a set of identical ball bearings?(a)Directly proportional to load(b)Inversely proportional to load(c)Inversely proportional to the square of load(d)Inversely proportional to the cube of load
	Plasticity Elasticity Ductility	20. 20.	 Which one of the following governors cannot be isochronous? (a) Hartnell (b) Hartung (c) Porter (d) Watt

Page 2 of 12

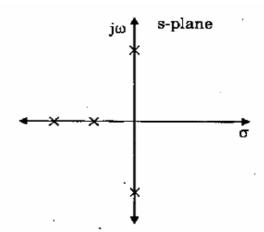
5


5

ದ

-

29.


30.

The crank-effort diagram of an engine running a machine is showing the areas above and below the mean line (in joules). What is the maximum fluctuation of energy in the above diagram?

- (a) 0 J
- (b) 30 J
- (c) 50 J (d) 55 j
- 22. Which one of the following does a flywheel control?
 - (a) The mean speed of an engine, when the load may vary
 - (b) The cyclic fluctuation of speed while delivering constant output
 - (c) Variation of load demand of the engine
 - (d) Mean torque developed by an engine
- If a shaft carries a series of unbalanced masses in different parallel planes, then what is the minimum number of arbitrary planes that can be chosen and will be sufficient for placement of balancing masses for complete dynamic balance of the system?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 1
- 24. Which one of the following statements is true for static balancing of a shaft?
 - (a) The net dynamic force acting on the shaft is zero.
 - (b) The net couple due to dynamic forces acting on the shaft is zero.
 - (c) Both (a) and (b)
 - (d) Neither (a) nor (b)
- 25. What type of progression will be followed by the amplitudes of free oscillations with coulomb damping?
 - (a) Harmonic
 - (b) Arithmetic
 - (c) Logarithmic
 - (d) Exponential

- Which one of the following is the curve traced by a point in the connecting rod of double slider crank chain?
 - (a) Hyperbola
 - (b) Circle
 - (c) Parabola
 - (d) Ellipse

The roots of the characteristic equation of a linear control system are shown in the figure as above with cross (x) marks. What can be said of the system?

- (a) Robust
- (b) Asymptotically stable
- (c) Marginally stable
- (d) Unstable
- 28. Which one of the following systems whose transfer functions are given below, will have the fastest transient response?
 - (a) $\frac{1}{s+1}$ (b) $\frac{25}{s+25}$ (c) $\frac{\sqrt{2}}{s+\sqrt{2}}$ (d) $\frac{10}{s+10}$
 - If ϕ = shear angle, α = rake angle, the shear strain in orthogonal cutting will be equal to which one of the following?
 - (a) $\cot \phi + \tan (\phi \alpha)$
 - (b) $tan\phi + \cot(\phi \alpha)$
 - (c) $\cos \phi + \sin (\phi \alpha)$
 - (d) $\sin \phi + \cos (\phi \alpha)$
 - Which one of the following is the wear land criterion for tool life according to ISO recommendations for roughing cuts?
 - (a) 0.1 mm
 - (b) 0.2 mm
 - (c) 0.3 mm
 - (d) 0.4 mm

	Ċiv	vil Service Examination: Mecha	nica	l Engi	ineeri	ng que	stio	n p	ape	r 2009	
31.		n one of the following is the sequence of naterials with increasing hot hardness? HSS, Cast alloys, Cemented carbides and Ceramic HSS, Cast alloys, Ceramic and Cemented carbides		36.			ie coo		iven l , Goo	elect the c below the List II Advantage d dimensi uracy, higł	lists: e onal
	(c) (d)	Cast alloys, HSS, Cemented carbides and Ceramic Cast alloys, HSS, Ceramic and Cemented carbides	in/		В.	Closed di	e	2.	proc goo Clos mac	duction rat d reproduce tolerance thining oft ecessary	ces and cibility ces,
32.	V _{mt} = for hig	= cutting speed for the minimum cost and cutting speed for the minimum time, then gh efficiency range, which one of the				Conventional		3.	Sim dies qua	ple, inexpe , useful fo ntities	or small
	(a) (b)	ving is true for cutting speed? Between V_{mt} and $V_{mc} \le V_{mc}$. n			Precision		4.	mac	uires muc hining, gc zation of r	od
	(c)	$\geq V_{mt}$	\mathcal{O}		Code		-		~	-	
	(d)	$\leq V_{mt}$	5		(\mathbf{n})	A 2	B		C 4	D 3	
33.	Conci	der the following operations of a universal			(a) (b)	2 3	1 1		4 4	2	
55.		ng head in a milling machine:	Ο		(D) (C)	2	4		1	3	
			0	L	(d)	3	4		1	2	
	1.	It sets the word piece in a desired position in relation to the machine table	. a	37.	. ,	on of the					
	2.	After each cut it rotates the job through a desired angle.) Ö		In me		g pro	ces	-	he magnit	ude of
	3	It provides a continuous rotary motion to the job during milling of helical grooves	0 11		(a) (b)	materia	ıl.	-		ength of t ength and	
	Which	-	• —		(0)					ne materia	
	(a)	n of these statements is/are correct? 1, 2 and3	+		(c)		in the	-		mit of the	
	(b)	1 only	\mathcal{O}		(d)			the	ultim	nate streng	ath of
	(c) (d)	1 and 2 only 2 and 3 only	Ο		(u)	the mat					Jerr Or
34.	Consi	der the following statements:	n	38.		one of th				correct? t enter the	e snace
	Flutes	are made in the drill:	D	1						ly if the ar	
	1.	To guide the chips upwards.	•		contac					,	5
	2.	To enable the cutting fluid to reach the	>		(a)	< tan ⁻¹					
		cutting edged.	\mathbb{N}		(b)	> tan⁻¹					
	3.	To break the chips.	\geq		(c)	> 1/2 ta	n ⁻¹ μ				
	Which	of these statements are correct?			(d)	< $\frac{1}{2}$ tar) ⁻¹ μ				
	(a)	1, 2 and 3	\geq			-		icior	nt of f	riction bet	ween
	(b)	1 and 2 only				etal and r					ween
		1 and 3 only									
	(c)	•		39.						etal formir	
	(d)	2and 3 only			proces (a)	sses is use Deep di			anufac	cture of st	eel wire?
35.	What	does 36 denote in the following marking	\succ	ť	(b)	Forging					
	of the	e grinding wheel?	+		(c)	Spinnin					
		5 1 A 36 L 5 V 2 3	Ţ		(d)	Drawing	g				
	(a)	Structure	l L	40.	Weldi	ng of alum	niniun	n is	norm	ally difficu	ult due to
	(b)	Manufacturer's reference	. 1			one of th					
	(c)	Nature of abrasive			(a)				-	ture of alu	iminium
	(c) (d)	Abrasive grain size			(b)	Formati	ion of	^F oxi	ide fil		
	(u)	ADIASIVE YIAIII SIZE			(c)	Chance				C1	
					(d)	Formati	ion of	car	bide	tilm	

41.	followin	er an electrode coating, performing the g functions:	48.	attain t	h an efficient layout, an he following objectives:	-
	1.	Stabilize the are		1.	Economy in handling of	
	2.	Control the rate at which the electrode		2	in-process and finished	
	3.	melts Control the flow of current		2. 3.	Efficient utilization of av	•
	3. 4.	Enhance the quality of the joint	1	3. 4.	Adoption of new safety	
		of these statements are correct?	\sim		Changes in product des he correct answer from:	
	(a)	1 and 2 only		below:		the codes given
	(b)	1, 2 and 3 only		(a)	1 and 2 only	
	(c)	2 and 3 only		(b)	1, 2 and 3 only	
	(d)	2, 3 and 4 only	•	(c)	2 and 3 only	
	(4)		\rightarrow	(d)	2, 3 and 4	
42.	Which o	one of the following cutting tool bits are	O	(~)	_, • • • • •	
		y powder metallurgy processes?	49.	Conside	er the following statemer	nts:
	(a)	Carbon steel tool bits			oduct layout is used for	
	(b)	Stellite tool bits	•	1. '	, Large quantity.	
	(c)	Tungsten carbide tool bits	-	2.	Standardized parts.	
	(d)	HSS tool bits	\sim	3.	Steady demand.	
	. ,			Which a	of these statements are	correct?
43.	Which o	one of the following materials is best	0	(a)	1 and 2 only (b)	1 and 3 only
	process	ed by injection moulding?		(c)	2 and 3 only (d)	1, 2 and 3
	(a)	All types of plastics				
	(b)	Thermoplastics	æ ^{50.}		onthly demand for a proc	
	(c)	Non-ferrous materials			 Annual carrying cost is 	
	(d)	Thermo-setting plastics		ordering EOQ?	g cost per order is Rs. 5	00. What is the
44.	Time st	udy of an operator with a performance		(a)	One month of sales	
		of 120% yields a time of 2 minutes. If the	\circ	(b)	Three months of sales	
		ces of 10% of the total available time		(c)	Four months of sales	
	are to b of opera	e given, then what is the standard time f		(d)	Six months of sales	
	(a)	2.00 minutes	51.	Which a	one of the following stat	ements is
	(b)	2.40 minutes	\sim	correct	-	
	(c)	2.64 minutes	\odot	(a)	Route sheet helps in as	sessing the
	(d)	2.67 minutes		. ,	quantity of materials re	
	(4)			(b)	The operation sheet give	es complete
45.	Which o	on of the following is feasible for study of			details of the manufact	uring operations.
		n and ling-cycle operations?		(c)	Routing helps in calcula	
	(a)	Micro-motion study	•		materials required for e	
	(b)	memo-motion study	\geq	(d)	The process sequence	
	(c)	PMTS			assessed from route ca	rd.
	(d)	МТМ	5 2.	Morel d	and botween the state 1	and 2 in a flow
			52.		one between the state 1 s is given by which one c	
46.	Which o	one of the following is a listing of all	\geq	express		or the following
		s or responsibilities of every person in a		express	2	
	departn	nent or group?	<u> </u>	(a)	_∫vdp	
	(a)	Operation process chart	\sim	(u)	J · • • •	
	(b)	Work distribution chart			2	
	(c)	Multiple activity chart		(b)	∫pdv	
	(d)	Gantt chart		(2)	J P - · 1	
47.	The low	v break even point is due to which one of			2 2	
.,.		by b	→	(c)	v dp + p dv	
	(a)	High productivity			1 Î	
	(b)	Low revenue			2 2 f f	
	(c)	Large angle of incidence		(d)	∫vdp−∫pdv	
	(d)	High revenue			1 1	
		-				

53.	press volum	ure line (r ne line (m	n _p) and t ,) can be	the e rel	slop	f constant e of constant l by which one o	f
		ollowing re	elations?				
	(a)	$m_p = m$					
	(b)	$m_v > m$	•				
	(c)	$m_p > m$					<hr/>
	(d)	m _p - m	v = T				
54.	Match	n list Twit	h l ist II	and	ا مما	ect the correct	
51.						elow the lists:	• —
		List I		9		List II	٠
	Α.	Constant	: volume	9	1.	Length	
		gas ther	momete	r			Ð
	В.	constant			2.	Resistance	ne
	~	gas ther		r	2	D	
	C.	Electrica			3.	Pressure	•
		resistance thermometer					\mathbf{S}
	D.	Mercury-			4.	Volume	
	51	thermor	-			Volume	(1)
	Code	:					
		А	В	С		D	2
	(a)	1	2	4		3	b
	(b)	3	4	2		1	
	(c) (d)	1 3	4 2	2 4		3 1	\square
	(u)	J	Z	т		T	D
55.	On w	hich laws	of therm	nody	/nam	nics is the	
		urement o					9
	(a)	Zeroth					• —
	(b)	First					+
	(c)	Second					\mathcal{O}
	(d)	Third					estionpaper
56.	Which	n one of th	ne follow	ving	pair	s is correctly	
	match			5		,	n
	(a)	Cetane		:		$C_{16}H_{32}$	D
	(b)	Ethano	I	:		C ₂ H ₅ OH	
	(c)	Iso-oct				C_8H_{16}	
	(d)		hyl lead	:		(CH ₃) ₄ Pb	
	(u)	Tender	inyi icau	•		(CI13)4 FD	
57.	Whick	n of the fo	llowing	is ai	n int	ensive	W W M
57.		nodynamic	-		1 1110	choive	\geq
	(a)	Density		-, -			
	(b)						
		Energy					\sim
	(c)	Entropy					• •
	(d)	Volume	5				0
50	\	C 11	с н				
58.				-		ations of state	
	alone		unit volu	iiie	u ya	as molecules	lttp:
	(a)		s equati	on			4
	(b)		r Walls e		ation		
				•			
	(c)		- Kwon	y et	Judu	UT	
	(d)	viriai e	quation				

l Eng	ineer	ing qu	iestior	n pap	er 2009	
59.	entha temp kJ/kg comp Negle	alpy of 1 perature g. There pressor a ecting ki e power	.00 kJ/kg that hav is 60 kJ, as the air netic and required W kW kW	g to a p ve an e /kg hea r passe d pote	ses air with pressure an inthalpy of 3 at lost from es through i ntial energi n air mass f	d 200 the it. es, what
60.		er using List Keenar fuction Helmho Availat	i the cod I n oltz	le give 1. 2. 3.	select the n below the List I $H - T_0S +$ $mV^2/2+m$ $U + P_0 \cdot V -$ $U - T_0 \cdot S$	e lists: I gZ
4	D.	closed Availat	system oility ons for a flow	4.	$H - T_0 \cdot S$	
ł	Code		5			
		A	В	С	D	
	(a)	1	2	3	4	
	(b)	4	2	3	1	
	(c)	1	3	2 2	4	
	(d)	4	3	2	1	
61.	Whic	h one of	the foll	owing	statements	is
	incor	rect?		-		
	(a)			ollows	the law of	
	(b)	Avail			ction of stat deration an	
	(c)		onment.	-	depends up	on
	(C)	press		iways (uepenus up	on
	(d)	Avail			es with temp ature.	perature
62.	and o		akes plac	ce at 6	ression rati % of the st ratio?	
63.	relati	ion amor vorking f (η _γ = (η _γ =	ng the O fluids ha = 1.2) > = 1.2) <	Otto cyc ving γ $(\eta_{\gamma} = 1)$ $(\eta_{\gamma} = 1)$	o, what is t cle efficienc = 1.2, 1.4 a 1.4) > (η _γ = 1.4) < (η _γ =	ies for and 1.67? = 1.67) = 1.67)

- (c) (d) $\begin{array}{l} (\eta_{\gamma}=1.2)=(\eta_{\gamma}=1.4)=(\eta_{\gamma}=1.67)\\ (\eta_{\gamma}=1.2)\geq(\eta_{\gamma}=1.4)\leq(\eta_{\gamma}=1.67)\end{array}$

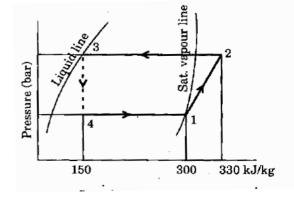
				-		
64.		the difference between the temperature		71.		ine inlet of a supersonic aircraft, a
		water outlet and saturation temperature	j			r is provided to decrease the velocity of
	of stea	m entering the heater called?				n supersonic to subsonic. What is the
	(a)	Pinch point			type of	f diffuser?
	(b)	Terminal temperature difference			(a)	Diverging duct
	(C)	LMTD			(b)	Converging duct
	(d)	Terminal point	_		(c)	Diverging (inlet), converging (outlet)
	. ,				. ,	duct
65.	Mean to	emperature of heat addition gets			(d)	Converging (inlet), diverging (outlet)
		ed resulting in an increase in cycle				duct
		l efficiency. What is this cycle called?	• —			
	(a)	Regenerative cycle	•	72.	Consid	er the following statements:
	(b)	Reheat cycle	-+-		1.	Induced draught fan is used to handle
	(c)	Carnot cycle	Ο			exhaust flue gases.
	(d)	Brayton cycle			2.	For maximum discharge, height of
	(u)	brayton cycle				chimney should be higher than the
66.	Which	and of the following characterizes the				height of hot gas column producing
00.		one of the following characterizes the	•			draught.
	Braytor		\sim		3.	Air preheater heats the primary air and
	(a)	Isobaric heat addition	4		51	secondary air.
	(b)	Isothermal heat release			4.	In big power plants draught is created
	(c)	Isochoric heat addition	Ð		т.	by induced draught fans.
	(d)	Isothermal heat addition			5.	
			\square	4		Blow-cock is used to empty the boiler. of these statements are correct?
67.		one of the following statements is	а			
	correct	?			(a)	1, 2 and 3
	High ai	r-fuel ratio is gas turbines	Q	4	(b)	2, 3 and 4
	(a)	increases power output.	·		(c)	1, 3, 4 and 5
	(b)	improves thermal efficiency.	D		(d)	1, 2, 3 and 4
	(c)	reduces exhaust gas temperature.		77	The star	
	(d)	does not damage turbine blades.	\cup	73.		im generators, a stoker acts as one of the
	()	5	• 🛁			ng devices. What is this device?
68.	Conside	er the following statements:			(a)	Air preheating device
		zzle efficiency depends on			(b)	Steam superheating device
	1.	Material of the nozzle	\mathbf{S}		(C)	Air superheating device
	2.	Size and shape of the nozzle.	Ð		(d)	Fuel feeding device
	3.	Mach number of flow.		74	W/bich	and of the following defines the degree
	۵. ۲	Reynolds number of flow.		74.	-	one of the following defines the degree
	Which	of these statements are correct?		4	or read	tion for steam turbines?
	(a)	1 and 2 only (b) 1 and 3 only			(a)	Δh_{f}
			•		()	Δh_{m}
	(c)	1, 2 and 4 (d) 2, 3 and 4	~			∆h _m
<u> </u>	Considu	nu the of fallowing statements.			(b)	
69.		er the following statements:	~			Δh_{f}
	•	aturation in nozzle flow causes			(c)	Δh_m
	1.	Reduced dryness fraction of steam.			(c)	$\Delta h_m + \Delta h_f$
	2.	Increased nozzle friction.	\geq			
	3.	Increased mass flow of steam.			(d)	Δh_f
	4.	Increased exit velocity.				$\Delta h_{f} + \Delta h_{m}$
	Which of	of these statements are correct?	<u> </u>			
	(a)	1 and 2 only (b) 2 and 4 only		75.		of the following components improves
	(C)	3 only (d) 1, 2 and 4				nt efficiency?
			Q	(1.	Economizer
70.	If the c	ross-section of a nozzle is decreasing in			2.	Air preheater
	the dire	ection of flow in subsonic flow, then what	t]_		3.	Condenser
		open in the downward direction?	+		4.	Forced draught fan
	(a)	Pressure will decrease and velocity			Select	the correct answer from the codes given
	. /	increase	r — 1	1	below:	
	(b)	Velocity will decrease and pressure			(a)	1 and 2 only
	X - 7	increase			(b)	2 and 3 only
	(c)	Both pressure and velocity increase			(c)	1, 2 and 3
	(c) (d)	Both pressure and velocity incluse			(d)	1, 2 and 4
	(4)	Boar pressure and velocity accrease			(4)	_, _ 0.00 .
		Pa	ge 7 o	of 12		

76.		er the following statements with respect az Turbine:		82.
	1. 2. 3.	It is intermediate between the mixed flow and the axial flow turbine. It is known as Diagonal turbine. It can be used as turbine as well as pump.		I
	Which ((a) (c)	of these statements are correct? 1 and 2 only (b) 2 and 3 only 1 and 3 only (d) 1, 2 and 3	i n /	83.
77.	Which of correct?	one of the following statements is	t.	
		ntrifugal pump will start delivering water ressure rise in the impeller is less than manometric head (H_m) more than or equal to manometric head	.ne	
	(c) (d)	$({\rm H}_{\rm m})$ less than suction head $({\rm H}_{\rm s})$ more than or equal to suction head $({\rm H}_{\rm s})$	r S	
78.	200 rpn efficien	ne is to operate under a head o f25 m at n. The discharge is 9 m ³ /s. If the cy is 90%, then which one of the	l p e	4
	followin (a) (b)	g turbines is suitable? Francis turbine Pelton turbine	0 9	
	(c) (d)	Kaplan turbine Deriaz turbine	U U	
79.	in natur (a) (b)	known for an open waterway excavated ral ground following its contour? Panels Flume	stic	84.
	(c) (d)	Canal Tunnel	Ο	
80.		one of the following equations is correct heterogeneous thermal reactor? Rate of neutron production = Rate of neutron leakage - Rate of neutron absorption	v . q u	0.5
	(b)	Rate of neutron production = Rate of neutron absorption - Rate of neutron leakage	W V	85.
	(c)	Rate of neutron production = Rate of neutron leakage + Rate of neutron absorption	/ M	
	(d)	Rate of neutron production = Rate of neutron absorption ÷ Rate of neutron leakage		
81.	In a nu control (a)	clear reactor, what is the purpose of rod? To reduce the speed of fast moving	ttp:	
	(b)	neutrons To absorb excess neutrons in the	q	
	(c) (d)	reactor To control fission temperature To control emission of Beta and Gamma rays		

32.	In which one of the following equipments used
JZ.	2
	in vapour absorption refrigeration system, is the
	final separation of water vapour from ammonia
	executed by further cooling?
	(a) Heat exchanger

- (b) Rectifier
- (c) Analyzer
- (d) Generator

A two-stage compressor compresses air with perfect inter cooling and same index of compression for both cylinders. Which one of the following is the correct expression for minimum work done? (With usual notations)


(a)
$$W = \frac{2n}{n-1} mRT_1 \left[\left(\frac{p_3}{p_2} \right)^{\frac{n-1}{2n}} - 1 \right]$$

(b) $W = \frac{2n}{n-1} mRT_1 \left[\left(\frac{p_2}{p_3} \right)^{\frac{n-1}{2n}} - 1 \right]$
(c) $W = \frac{2n}{n-1} mRT_1 \left[\left(\frac{p_3}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$

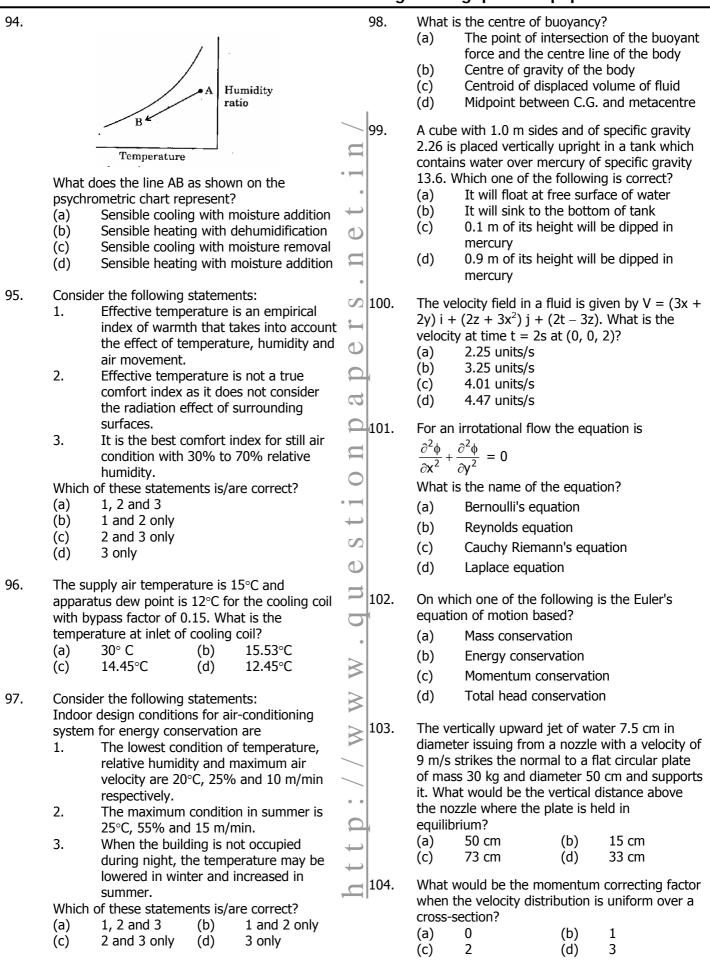
(d)
$$W = \frac{2n}{n-1} mRT_1 \left[\left(\frac{p_3}{p_1} \right)^{\frac{n-1}{2n}} - 1 \right]$$

A vapour compression refrigerator has a COP o f3, if the work absorbed by the compressor is 25 kW. What would be the amount of heat rejection in the condenser?

(b)	50	kW

(d) 100 kW

A vapour compression refrigeration cycle is as shown in the pressure - enthalpy diagram above. What will be its COP?


(a)	3
(b)	4

4 5 (c)

6

(d)

	Civi	l Serv	ice Ex	ami	nation: Mecha	nical Er	igineer	ing question paper 2009
sy re 1. 2. 3. 4. Se be	 flow rate is less than the designed value. 2. Non-condensable gases are present in the system. 3. Accumulation of lubrication oil in the condenser. 4. Low charge of refrigerant in the system. Select the correct answer from the codes given below: (a) 2 only (b) 1 or 2 or 3 							 In winter comfort air conditioning, the following changes may take place: 1. Temperature and humidity ratio both rise. 2. The final relative humidity can be lower or higher than the initial value. 3. Both dry bulb and wet bulb temperatures will increase. Which of these statements is/are correct? (a) 1, 2 and 3 (b) 1 and 2 only (c) 2 and 3 only The barometer pressure is 1.03 bar, the partial
87. Ma ar A E C C C	latch L nswer R A. A B. F C. F D. N	.ist I wit	h List I ne code ant a	I and giver	select the correct below the lists: List II Colour 1. Purple 2. Green 3. Light blue 4. White 5. Orange	u.s.apers.	press partia bulb relatir (a) (b) (c) (d) Moist	ure of air is 1 bar, and the saturation al pressure of water vapour at the same dry temperature is 0.05 bar. What is the ve humidity? 5% 50% 60% 97%
(a (b (c (d	b) c) d)	A 1 3 1 3 20ne of th	B 2 2 4 4	C 4 2 2 wing r	D 3 5 3 5 efrigeration system	t i o n p	prope state two t What (a)	e three independent thermodynamic erties are required to fix its thermodynamic . Psychrometric chart however uses only hermodynamic properties to fix the state. is the reason? Psychrometric chart is an approximation to actual properties.
	ses oil a) o) c)		or oper using using using	rating NH₃ R-12 R-22	at –10°C?	d u e s	(b) (c) (d)	Psychrometric chart assumes thtt water vapour and air behave like perfect gases. Psychrometric chart is drawn for fixed atmospheric pressure. Psychrometric chart does not consider
ar A	nswer L C A. R		ne code ion of		select the correct below the lists: List II Chemical formula and name SO ₂ - Sulphur Dioxide CHF ₂ Cl - Difluoro Monochloro Methane	• 93. M M /	In me 1. 2.	thermodynamic equilibrium states. der the following statements: easurement with a wet bulb thermometer The wet bulb depression is an index of relative humidity. The thermometer bulb should be wrapped by moist cloth and it is necessary to dip the end of the cloth in water.
C	D. M g ti	R-22 Iercury- Ilass hermom		3. 4.	Pressure CFCl ₃ - Monofluoro Trichloro Methane	t p .	3. 4.	Air is to flow at sufficiently low velocity past the thermometer bulb. Dry bulb temperature will be equal to the wet bulb temperature when the air is completely dry.
(a (b (c (d) ;)	A 1 4 1 4	B 3 3 2 2	C 2 3 3	D 4 1 4 1	<u>h t</u>	Whicl (a) (b) (c) (d)	h of these statements is/are correct? 1 and 2 2 and 3 3 and 4 1 only

105.	$\begin{array}{llllllllllllllllllllllllllllllllllll$		two sta the oth statem	ions: Each of the next ten (10) items consists of atements, one labelled as the 'Assertion (A)' and her as 'Reason (R)'. You are to examine these two ents carefully and select the answers to these using the codes given below:
106.	Which one of the following is correct?	<u> </u>	(a)	Both A and R are individually true and R is the correct explanation of A
	Minor losses through valves, fittings, bends, contractions etc. are commonly modelled as	in	(b)	Both A and R are individually true but R is not the correct explanation of A
	proportional to	•	(c)	A is true but R is false
	(a) Total head(b) Static head	÷	(d)	A is false but R is true
	(c) Velocity head	Ο		
	(d) Dynamic head		111.	Assertion (A): A man pushes a stationary truck
107.	Which one of the following statements is	n.		to the utmost of his power but does not move it; he does no work.
	correct?			Reason (R): The work done necessarily implies
	Intensity of turbulence is	\mathbf{S}		motion.
	(a) the frequency of turbulent fluctuations	H		
	(b) the violence of turbulent fluctuations and is measured by the root mean	G	112.	Assertion (A) : Hunting of a governor is due to its poor sensitivity.
	square value of velocity fluctuations.	\square	*	Reason (R): Hunting is due to resonance
	(c) the mean time interval between	3 C		condition arrived at when the frequency of
	reversals in the sign of velocity fluctuation.			fluctuations in engine speed happens to coincide
	(d) random movement of molecules.	\square	*	with the natural frequency of oscillations of the
	(d) Tandom movement of molecules.	C		governor.
108.	Which of the following represents a possible		113.	Assertion (A): In a Swiss type automatic lathe,
100.	two-dimensional incompressible flow?	\circ		the turret is given longitudinal feed for each tool
	(a) $u = 5x^3 + y^2$; $v = -15x^2y + 30$	• —		in a specific order with suitable indexing.
	(b) $u = 4x + y^3; v = x^2 - y^2$	+		Reason(R): A turret is a multiple tool holder to
	(c) $u = x^2 + y; v = 4xy + 10$	\mathcal{O}		facilitate machining with each tool by indexing
	(d) $u = xt^2; v = xyt + y^2$			without the need to change tools.
		Ο		-
109.	What is the velocity profile for turbulent	n	114.	Assertion (A): Workability is a term applied to
	boundary layer on a flat surface?		4	forging, rolling and extrusion.
	(a) $\frac{u}{u_{\infty}} = \sin\left(\frac{y}{\delta}\right)^{1/7}$	\mathbf{O}	ľ	Reason (R): These processes are sheet
	$u_{\infty} = \sin(\delta)$	٠		forming processes in which the forces applied are primarily tensile.
	$(y)^{1/7}$	\geq		
	(b) $\frac{u}{u_{\infty}} = \left(\frac{y}{\delta}\right)^{1/7}$		115.	Assertion (A): Indirect cost is more difficult to
		\geq		assess than direct cost.
	(a) $u (y y)^{1/2}$			Reason (R): Overhead cost apportioning is
	(c) $\frac{u}{u_{\infty}} = \left(\frac{y}{\delta} - \frac{y}{8}\right)^{1/2}$	\geq		approximate and time consuming.
	$\mathbf{r} = \mathbf{r} (\mathbf{r}) + (\mathbf{r})^3$			
	(d) $\frac{u}{u_{\infty}} = \frac{3}{2} \left(\frac{y}{\delta} \right) - \frac{1}{2} \left(\frac{y}{\delta} \right)^3$		116.	Assertion (A): The manufacturing cell typically
	$u_{\infty} = 2(\delta) - 2(\delta)$			reduces the material handling cost of product
		• •		going through the process.
110.	A plate 0.5 m long is placed at zero angle of	\bigcirc		Reason (R): Machines for a process are not
	incidence and moving with 1.5 m/s. What is the		1	located in sequences, one next to another.
	maximum boundary layer thickness? (Assume	+	117.	Assertion (A): Capital budgeting is a technique
	for water at 20°C, $\Gamma = 1.205 \text{ kg/m}^3$, $\mu = 6$, $\gamma = 20 \times 10^{-6} \text{ m}^2$ (c)	+		for using the resources more efficiently.
	$20 \times 10^{-6} \text{ m}^2/\text{s}$)	C		Reason (R): Time value of money is to be
	(a) 08.5 mm (b) 10.7 mm	,	-	taken into account when various options are
	(c) 12.9 mm			considered.
	(d) 14.2 mm			

0

118. **Assertion (A)**: Job shop production uses general purpose machine tools and other related equipment.

Reason (R): The general purpose machine tools have lot of non-productive time during operations and thus the output results into high cost per piece.

119. Assertion (A): Reducing set-up time decreases economic batch size.

Reason (R): Flexibility of production increases customer satisfaction.

120. **Assertion (A)**: In turbulent flow through a commercial concrete pipe, the friction factor is practically independent of Reynolds number but depends on the surface roughness.

Reason (R): In a commercial pipe, pressure drop is primarily governed by flow separation at the roughness length scales of the wall.

 \mathcal{O} 5 C 5 0 W M ttp: