UPSC Examination: (Civil Service) question papers

Civil Service Examination: Civil Engineering question paper 2009

വ

5.

- Given that F = $(\alpha \cdot t^{-1} + \beta \cdot t^2)$ where F denotes 1. force and t time; how is β described dimensionally? MLT⁻² MLT⁻³ (a) (b) LT⁻⁴ MLT⁻⁴ (c) (d)
- 2. What is the unit vector of the resultant of the following two forces?

$$\overline{F}_1 = 2\hat{i} + 3\hat{j} + 4\hat{k}$$

$$\overline{F}_2 = 4\hat{i} + 3\hat{j} + 2\hat{k}$$

(a)
$$6i + 6j + 6k$$

(b)
$$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}}$$

(c)
$$-2\hat{i} + 2\hat{j}$$

In the figure shown, consider the two identical spheres with radius 5 cm, weight 100 N each and the distance between the two walls as 15 cm. What is the reaction force at point A? 173.2 N 57.7 N (a) (b) (c) 0 N

3.

A number of rods are hinged together to form three identical rhombuses as shown in the figure. If a horizontal force of 1000 N is applied at A, what is the force P required at B for equilibrium? (;

(a)	3000 N	(b)	1000 N
(c)	4000 N	(d)	2000 N

x

What is the moment of inertia of the triangle with respect to xx as shown in the figure?

A stone is released from an elevator, as it goes up with an acceleration $\boldsymbol{\alpha}.$ If the acceleration due to gravity is g, what is the acceleration of the stone after release?

- α_{i} upward (a)
- (b) g - α , upward
- g α , downward (c)
- (d) g, downward

Two masses m_1 and m_2 and m_2 ($m_1 > m_2$) are attached to the ends of a light weightless string passing over a fixed smooth guide pulley as shown in the figure. If g = acceleration due togravity, what is the resulting acceleration?

(a)
$$\left(\frac{2m_1m_2}{m_1+m_2}\right) \cdot g$$

(b)
$$\left(\frac{1}{m_1} + \frac{1}{m_2}\right) \cdot g$$

(c)
$$\left(\frac{\mathbf{m}_1 - \mathbf{m}_2}{\mathbf{m}_1 + \mathbf{m}_2}\right) \cdot \mathbf{g}$$

(d)
$$\left(\frac{\mathbf{m}_1 + \mathbf{m}_2}{\mathbf{m}_1 - \mathbf{m}_2}\right) \cdot \mathbf{g}$$

ധ

14.

15.

- 8. A cricket ball of mass 150 gm, moving with a velocity of 12 m/s, is hit by a bat so that the ball is turned back with a velocity of 20 m/s. The force of the blow acts for 0.01 s on the ball. What is the average force exerted by the bat on the bat on the ball?
 - (a) 480 N
 - (b) 48 N
 - (c) 248 N (d) 4.8 N
- 9. A thin uniform hoop ring of radius R is rolling without slipping such that the mass centre moves at a speed V. If the hoop weighs W kg, what is the corresponding kinetic energy o the hoop relative to the ground?
 - (a) $\frac{WV^2}{4g}$
 - (b) $\frac{WV}{2g}$ WV²
 - (c) $\frac{WV}{g}$ (d) $\frac{2WV^2}{g}$
- 10. A mass m moving horizontally with velocity jV₀ strikes an ideal pendulum of mass m. If the two masses stick together after collision, what is the maximum height reachable by the pendulum?
 - (a) $\frac{V_0^2}{8g}$
 - (b) $\frac{V_0^2}{4g}$
 - (c) $\sqrt{V_0 g}$ (d) $\sqrt{V_0 \cdot \frac{g}{2}}$

11. A ladder of weight W rests against a smooth vertical wall at one end and on rough horizontal ground at the other. The coefficient of friction

between the ladder and the ground is $\frac{1}{4}$. What

is the maximum angle of inclination of the ladder to the vertical if a man of weight W is to climb to the top of the ladder without disturbing the setup?

- (a) $\tan^{-1}\left(\frac{1}{4}\right)$ (b) $\tan^{-1}\left(\frac{1}{4}\right)$
- (c) $\tan^{-1}\left(\frac{1}{3}\right)$ (d) $\tan^{-1}(4)$

12.	At a certain stage under elastic loading, the elongation observed was 0.03 mm, the gauge length was 150 mm and the modulus of elasticity was 2×10^5 N/mm ² . What was the						
	stress (a) (c)	at that location 4 N/mm ² 80 N/mm ²	l? (b) (d)	40 N/mm ² 60 N/mm ²			
13.	In an	axially loaded c	ompress	ion member with a			

circular cross-section of radius r, what is the radius r, what is the radius of the core section which is proof against tensile stress?

(a)	$\frac{r}{2}$	(b)	$\frac{1}{3}$
(c)	<u>r</u> 4	(d)	r 6

The figure shows the shear force diagram for an overhanging beam ACDB.

Consider the following statements with respect of the above beam:

- 1. The beam has supports at A and D.
- 2. The beam carries a concentrated load at C of 25 KN.
- Bending moment at D is 15 KN m.
 The beam carries a uniformly
 - The beam carries a uniformly distributed load of 80 KN over the portion AC.

Which of the statements given above is/are correct?

(a)	1, 2 and 4	(b)	1 only
(C)	2, 3 and 4	(d)	1 and 2 only

Which of the following are implied in the assumption of plane sections remaining plane (in simple bending)?

- 1. Stress is proportional to the distance from neutral axis.
- 2. Displacement is proportional to the distance from neutral axis.
- 3. Strain is zero across the cross section.
- 4. Strain is directly proportional to the distance from neutral axis.

Select the correct answer using the code given below:

Code :

(a)	1 and 4 only	(b)	2 and 3
(c)	3 and 4	(d)	1, 2 and 4

16. A beam of rectangular cross-section is to be cut from a circular beam of diameter D. What is the ratio of the depth of the beam to its width for maximum moment of resistance? $\sqrt{3}$ $\sqrt{2}$ (a) (b) $\sqrt{3}$ 3 (c) (d) 22 17. Power is transmitted through a shaft, rotating at 2.5 Hz (150 r.p.m.). The mean torque on the shaft is 20×10^3 N m. What magnitude of power in kW is transmitted by the shaft? 120π (a) 50π (b) (c) 100π (d) 150π 18. 400 N/mm² 23. 400 N/mm² 400 N/mm² (a) (c) ∇ 00 N/mm² **O**24. The square element in the figure is subjected to a biaxial stress of 400 N/mm² as shown. What is the intensity of normal stress p_n on the plane BD? $400\sqrt{2}$ 200 (a) (b) $400 / \sqrt{2}$ (c) (d) 0 \mathcal{C} 19. Which of the following is the most appropriate theory of failure for mild steel? Maximum principal stress theory (a) Maximum principal strain theory (b) (c) Maximum shear stress theory Maximum strain energy theory (d) 20. What is the normal stress on a plane inclined at \geq 45° to the axis of a square rod of side α subjected to an axial tensile force of T? 25. (a) (b) (c) (d) 21. In the following pin-jointed truss, what is the displacement of support B due to the given load? 500√3 kN 1 m 1 m В 1 m

(Cross-sectional area of each member = 50 mm², modulus of elasticity $E = 2 \times 10^5 \text{ N/mm}^2$) 3. 25 mm (a) 2.50 mm (b) 1.50 mm (c) (d) 0.50 mm Three semicircular symmetrically three-hinged arches have radii 5 m, 7.5 m and 10 m respectively, and each arch supports a point load W at its own crown. What is the ratio of horizontal thrusts in these arches?

(a)	1: 2: 3
(b)	1: 1.5: 3
(C)	1: 1: 1

(d) 1: 1.5: 2

1.50

For a symmetrical three-hinged arch of span 12 m and rise2 m, the influence line diagram for horizontal thrust at either support is to be drawn. What is the maximum value influence line ordinate? 0.75 1.00

(b)

2.00

In the portal frame shown, find the ratio of moments M_{BA} and M_{CD} induced at the column heads due to sideway

The beam AB shown, of span 10 m and having uniform EI = 10000 KN m^2 , is subjected to a rotation of 0.001 radian at end B. What is the fixed end moment at A?

(a)	1.5 KN m
(b)	2.0 KN m

- (c) 3.0 KN m
- (d) 4.0 KN m

0

(a)

30.

shown?

(a)	–32 KN m	(b)	–22 KN m
(c)	–42 KN m	(d)	–52 KN m

1 kN/m macВ EI = Constant 12 m12 m

What is the bending moment at B for the symmetrical portal frame shown, which is subjected to a uniformly distributed load of 1 KN /m on the beam portion? 4.0 KN m

(b)

(d)

6.4 KN m

8.4 KN m

28.

(a)

(c)

26.

27.

7.2 KN m

What is the force required for displacing support C horizontally through a distance Δ ?

(a)	$EI\Delta$	(b)	3EI∆
	8	(0)	20
(c)	$\frac{EI\Delta}{16}$	(d)	$\frac{EI\Delta}{10}$

29. Two point loads 2X and X spaced 3 m apart cross a girder of 9 m span. If the maximum bending moment occurring on the girder is 48 KN m, what is the value of X?

- 18 KN (a)
- (b) 9 KN
- (c) 6 KN
- 4.5 KN (d)

For the pin-jointed plane truss shown in the figure, which of the following diagrams represents the influence line for the bar force in the member DI, when a load travels on the bottom chord?

Consider the following statements:

- Partially saturated soil sample is an 1. example of three-phase system.
- Submerged density of a soil sample is 2. equal to the saturated density divided by (1 +water content expressed as a fraction).
- 3. Void ratio of a soil sample is defined as the ratio of volume of voids to volume of soil grains

Which of the statements given above are correct?

- 1 and 2 only 1 and 3 only (a) (b)
- (c) 2 and 3 only (d) 1, 2 and 3

35.

Civil Sorvico -. . . ~ • · · · · •

	Civil Service Examination: Civi	l Enginee	rin
36.	 Among the following types of water, which one is chemically combined in the crystal structure of the soil mineral and can be removed only by breaking the crystal structure? (a) Capillary water (b) Adsorbed water (c) Hygroscopic water (d) Structural water 	42.	Th cla col (a) (b) (c) (d)
37.	 What is Newmark's chart used for? (a) To know the safe bearing capacity of a footing (b) To know the settlement of a foundation (c) To know the stress intensity at any depth due to a loaded foundation (d) To know the allowable bearing pressure on the foundation 	- 43. + 0 	Usi ma σ_3 σ_1 N ϕ
38.	In a falling-head permeability test, the time taken for the head to fall from 27 cm to 3 cm is 10 minutes; if the test is repeated with the same initial head, i.e., 27 cm, what time would it take for the head to fall to 9 cm? (a) 3 minutes (b) 5 minutes (c) 6 minutes (d) 7.5 minutes	n p a p e r	(a) (b) (c) (d)
39.	 What is the most important condition to be satisfied for piping phenomenon to occur in soils? (a) Specific gravity of soil solids is more than 2.8 (b) Void ratio is more than 2.0 (c) Hydraulic gradient of nearly unity is maintained (d) Soil is fine-grained 	44. 44. 0 1 2 3 0 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 3 0 1 1 1 1	Co neg 1. 2. 3.
40.	During a laboratory consolidation test with double-drainage system, a 20 mm thick clay sample underwent 90% consolidation in 10 minutes. If another sample of the same soil is tested with single drainage with all other conditions remaining same , what would be the time required for it to undergo 90% consolidation? (a) 10 minutes (b) 20 minutes (c) 30 minutes (d) 40 minutes	0	Wh cor (a) (b) (c) (d) In is ((a)
41.	 In a laboratory compaction test on soils, what is the effect of increasing compactive effort in the values of maximum dry density and optimum moisture content respectively? (a) Increase, Increase (b) Increase, Decrease (c) Increase, Unaltered (d) Unaltered, Increase 	http:	(b) (c) (d)

	Put	blished by: http://www.questionpapers.net.in,
nee	ring q	uestion paper 2009
	The un clay soi cohesio	confined compressive strength of a pure I is 100 Kn/m ² . What is the value of on of the soil in Kn/m ² ?
	(a)	200
	(b)	100
	(c)	75
	(d)	50
	Using M major $\mathfrak{p}_{_3}$ and	Nohr's diagram, the relation between principal stress σ_1 , minor principal stress shear parameters C and ϕ is given by
	$\sigma_1 = \alpha$	$\sigma_3 \operatorname{N\phi} + 2\operatorname{C}\sqrt{N\phi}$. What is the value of
	ing in tr	h sequation?
	(a)	$\frac{1-\sin\frac{\Phi}{2}}{1+\sin\frac{\Phi}{2}}$
	(b)	$\frac{1+\sin\phi}{1-\sin\phi}$
	(c)	$\frac{1-\sin\phi}{1+\sin\phi}$
	(d)	$\frac{1+\sin\frac{\phi}{2}}{1-\sin\frac{\phi}{2}}$
	Conside negativ	er the following statements regarding e skin friction in piles:
	1.	It is developed when the pile is driven through a recently deposited soil layer.
	2.	It is developed when the pile is driven through a layer of dense sand.
	3.	It is developed due to a sudden drawdown of the water table.
	Which of correct?	of the statements given above is/are ?
	(a)	1 only
	(b)	2 only
	(c)	2 and 3

1 and 3

case of hill roads, which one of the following correct?

- Resisting length should be kept as low as possible
- Resisting length should be kept as large as possible
- There is no relevance for resisting length
- Resisting length should be equal to stopping sight distance

									-	
46.	Mato ansv	h List I wi ver using t List I	th Lis he co	st II and s ode given	select the correct below the lists: List II	50.	What s carbon constru	hould be the r in bitumen ov uction?	elative m er that in	agnitude of free tar for road
		Item		ſ	Definition		(a)	More	(h)	
	۸	Basic	1	Vohiclo	s that nass a divo		(a)	Equal	(d)	Uprolativo
	Π.	Capacity	, '		a a lang/hour		(0)	Lyuai	(u)	Uniciative
	р	Troffic	່. ງ	Movim	m number of	51	If the o	difference in el	evation b	etween the edges
	D.	Density	2	Wahialay			of a pa	wement of wid	th 9.0 m	and its crown is
		Density	•	venicies	s that can pass a		7 5 cm	what is the c	ambor of	the navement?
				given p	oint on a lane		(a)	1 in 60		1 in 15
				during	one hour under	-	(a)	1 in 20	(d)	1 111 40 1 in 15
				prevaili	ng roadway and		(0)	1 111 30	(u)	
				traffic c	onditions	52	The m	odulus of suba	rade read	tion is evaluated
	С.	Traffic	3	Numbe	r of vehicles	$\mathbb{O}^{\mathbb{Z}^2}$	from w	which one of the	o followir	
		Volume		occupyi	ng a unit length	of	(a)	Diato boaring		iy:
				a lane a	at a given instant		(a) (b)		lesi	
	D.	Possible	4	Maximu	im number of		(U)			
		Capacity		vehicles	s that can pass a		(C)		test	
		. ,		aiven p	oint on any lane	S	(a)	I riaxiai test		50 1 1
				durina	one hour under	5 3.	In which	ch of the follow	ving gaug	jes are 52 kg rails
				ideal ro	adway and traffic		mostly	used?		
				conditio	ns		(a)	Broad Gauge		
	Cod	۵.		contantic	115		(b)	Meter Gauge		
	oou	Δ	R	C	П	9	(C)	Narrow Gaug	е	
	(a)	2	1	3	4		(d)	Both Broad a	nd Meter	Gauge
	(b)	4	1	3	2					
	(c)	2	3	1	4	5 4.	What is	s the minimum	degree	of curvature to
	(d)	4	3	1	2		which	curved rails are	e cast?	
	(u)	•	0	•	-		(a)	1°	(b)	2°
47	Whic	h one of t	he fo	llowina d	ictates the		(C)	3°	(d)	4°
	mini	mum requ	ired s	siaht dista	ince in vallev					
	curv	⊷s?		igne diete	linee in railey	55.	Given t	that the equilib	rium can	t required for
	(a)	Desian	snee	⊳d			45kmp	h speed in a b	road gau	ge main line is
	(h)	Height	ofol	hstarle			7.78 cr	n, what is the	value of	the cant to be
	(0)	Hoight	ofd	rivor's ove	`	S	provide	ed for a branch	track th	erein?
	(d)	Niahtti	mod	Irivina cor	dition		(a)	– 0.28 cm	(b)	– 0.18 cm
	(u)	Nightti	ine u	inving coi		Θ	(c)	0.18 cm	(b)	0.28 cm
10	Whic	h one of t	ho fo	llowing is	rolovant for the		(0)		(4)	0120 0111
40.	doto	rmination		norolovati	inelevalit for the		Consid	er the followin	a recentio	on signals.
	uele in ho	rizontal a	UI SU				1	Outor Cianal	greeepin	Si Signais.
	IN NO		lrves		K IN M IN MII traffia valaaity ia V		Ι.	Outer Signal		
	load	s, given tr	iat th	e design	traffic velocity is v	v .	2.	Warner Signa	al	
	ктр	n?					3.	Home Signal		
	(2)	V ²				\leq	1	Startor Signa	I	
	(u)	127R					4 .		1	
		v^2				\leq	Which	of the followin	g sequen	ces is correct id
	(b)	17 50					respec	t of reception s	signals as	a train departs
		17.3K				\geq	from a	platform?		
	(c)	<u>V</u> ²					(a)	2-1-3-4		
	(0)	225R					(b)	4-2-1-3		
		(\/ ⊥ 8) ²				(c)	1-2-3-4		
	(d)	1070	<u>)</u>				(d)	3-2-1-4		
		12/1	ζ.			• •				
49	How	many nur	nh≏r	of noints	of conflicts can ri	57.	In case	es when the ra	ilway trac	k is submerged,
Ξ 7.	with	One-way	. DCI	ation in h	oth directions on	an H	the tra	in shall be stop	oped dea	d and then
	intor	section bo	vina	1 1000 11 D		··· +-	allowed	d to proceed. V	Vhat is th	ie maximum
	(a)		ving	r icys:		اب	speed	at which the jo	ourney ca	n resume?
	(a) (h)	4 4					(a)	20 kmph	5	
	(U)	D					(b)	18 kmph		
	(C) (c)	8 10				4	(c)	10 kmph		
	(d)	10					(d)	1 kmph		
							\/			

58. Match List I with List II and select the correct 63. A triangular lamina with base 3 m and height 3 answer using the code given below the lists: m is immersed in water vertically with base parallel to water surface and vertex touching List I List II Use the water surface. What is the value of total Bridge type **Bascule Bridge** Road Bridge over water pressure eon one face of the lamina? Α. 1. 90 kN River (a) Β. Plate Girder Navigable Channel (b) 67.5 kN 2. 135 kN Bridge (c) С. Suspension 3. Army Bridge (d) 180 kN Bridge A buoy 2 m³ in volume an d1 tonne in weight is Pontoon D. 4. **Railway Bridge** 64. fully submerged at high tide in a harbour and is Bridge ധ held down by a chain. The specific gravity of Code: Α В С D sweater may be assumed as 1.025. What is the 2 value of the tension in the chain? 3 1 (a) 4 2 3 2.00 tonne (b) 4 1 (a) 3 4 2 (b) 1.00 tonne (c) 1 $(\boldsymbol{\Gamma})$ (d) 2 1 4 3 (c) 2.05 tonne (d) 1.05 tonne 59. A space having volume of 2 m³ is filled with C water (bulk modulus of elasticity = 2×10^9 Pa) 65. If a glass tube of small diameter d is dipped in a liquid, what is the height of rise/fall of the liquid and is subjected to a pressure of 10 bar. What \bigcirc is the resulting change in the volume of the meniscus in the tube? വ water? 4ωd (a) (a) 0.1 L $\sigma \cos \alpha$ (b) 1 L $\sigma \cos \alpha$ (c) 4 L (b) 4ωd (d) 10 L $4\sigma\cos\alpha$ (c) ωd 60. Which one of the following statements is correct? ωd (d) (a) Surface tension of a liquid decreases $4\sigma\cos\alpha$ with temperature 5 Vapour pressure of a liquid is (b) Where: independent of the externally exerted U ω is specific weight of the liquid pressure α is the relevant angle (c) Dynamic viscosity is the force per unit σ is surface tension of the liquid in the tube velocity gradient (d) Viscosity of a gas increases with An ocean-going ship, when on high seas, is 66. temperature subjected to oscillatory motion both by rolling and pitching. Which one of the following \geq 61. Given $\mu = 0.06$ poise and $\rho = 0.9$ gm/cm³, what statements related to the metacentric height of is the value of kinematic viscosity in stakes? the ship is correct? 0.04 (a) (a) It is greater for rolling than for pitching (b) 0.054 It is leaser for rolling than for pitching (b) (c) 0.067 (c) it is equal in both the cases (d) 0.082 (d) it keeps varying according to direction of movement of the ship 62. Consider following four values of pressure: 15 m of water 1. 67. A jet of water issuing from a nozzle with a 100 kPa 2. velocity 20 m/s hits a flat plate moving away 3. 2 m of mercurv from it at 10 m/s. The cross-sectional area of 2000 millibar 4. the jet is 100 cm^2 . What is the force on the What is the correct sequence of these pressure plate? magnitudes in descending order? (a) 100 N 3 - 4 - 1 - 2(a) 10 N (b) (b) 4 - 3 - 1 - 2 (c) 10000 N (c) 3 - 1 - 2 - 41000 N (d) (d) 4 - 2 - 1 - 3

72.

73.

75.

68. Match List I with List II and select the correct answer using the code given below the lists:

ansv	ver using the	code give	en below the lists:
	Line		Statement
۸	Streamlines	1	Along with the
л.	Streamines	, 1.	liquid will rise to
			same height in
			niezometric tubes
			at different noints
D	Dath lines	С	Baths followed by
D.	Fatti iiites	۷.	difforent noonlo
			after coming out of
			the deer of a
			cinoma ball
C	Strook lines	. o	
С.	Streak lines	J. J.	hoodlights of
			highway cars
			recorded by flach of
			a camora at night
П	Equinatort	al 4	a camera at mynt Dathe followed by
υ.	Linos	ai 4.	ratins tonowed by
	lines		hoots flooted by
			childron in a
			cilluren in a
Cod	e:		moving stream
	A B	C	D
(a)	1 4	2	3
(b)	3 4	2	1
(c)	1 2	4	3
(d)	3 2	4	1
If ve	Nocity field $\overline{\mathbf{v}}$	$= ax\hat{i} -$	avi in which x v
aroli	in m and a -	0.1 c ⁻¹ w	(bat is the nature of
tho	nt in anu a = stroomlinos fo	U.IS,W	vo volocity field?
(n)	Darallal lir		ve velocity field?
(d) (h)	Concontri	ies a circloc	
(D) (c)	Doctongu	lar hyport	
(J)	Ellinso	а пуреп	JUIA
(u)	Сшрэе		
Whi	ch one of the	following	statements is
corre	ect, when a ci	rculatory	tlow is susperposed
over	a uniform ste	eam in wh	nich a cylinder is held
with	its axis perpe	endicular	to the flow
direc	ctions?		
(a)	Cylinder f	luctuates	about its axis
(b)	Cylinder e	experience	es a force along the
	direction	of the ste	am
(c)	Cylinder e	experience	es a force transverse
	to the dire	ection of	the steam
(d)	Cylinder t	ends to a	ttain infinite velocity
Cons			
+ 6 ~ .	sider the steal	m functio	$\mathbf{n} \mathbf{w} = 2\mathbf{x}\mathbf{y}$; what is
une v	velocity at (3	m functio 4)?	$n \psi = 2xy;$ what is
(a)	velocity at (3, 1.0 m/s	m functio 4)?	$\mathbf{n} \ \mathbf{\psi} = 2\mathbf{x}\mathbf{y}; \ \mathbf{what} \ \mathbf{s}$
(a) (b)	velocity at (3, 1.0 m/s 8.0 m/s	m functio 4)?	n ψ = 2xy; what is

69.

70.

71.

(c)

(d)

10.0 m/s

12.0 m/s

A flownet is drawn for a non-homogeneous embankment section resting on an impervious rock foundation. Seepage head = h, number of flow passages = N_f , number of equipotential drops = N_d , coefficients of permeability in x (along the stream) and y (perpendicular to stream) directions are K_x and K_y respectively. Which one of the following computes the flow rate correctly?

(a)
$$q = h \cdot \sqrt{\frac{K_x}{K_y}} \cdot \frac{N_d}{N_f}$$

(b)
$$q = h \cdot \sqrt{\frac{K_y}{K_x}} \cdot \frac{N_f}{N_d}$$

(c)
$$q = h \cdot \sqrt{\frac{K_x + K_y}{2}} \cdot \frac{N_f}{N_d}$$

(d) $q = h \cdot \sqrt{K_x \cdot K_y} \cdot \frac{N_f}{N_d}$

A 15 cm diameter pipe carries 70 lit/s of oil (sp.
Gr. = 0.75). At a section 62 cm above the
datum, the pressure is 2 cm vacuum of mercury
(sp. Gr. = 13.6). Assuming kinetic energy
correction factor of 1.1, what is the total head in
m of oil at the section

(a)	1.057	(b)	1.137
(c)	1.148	(d)	1.228

74. In flow over a v-notch, how much error in the computation of discharge over the notch would arise from an error of 1% in the measurement of head over the notch?

(a)	1%	(b)	1.5%
(c)	2%	(d)	2.5%

Match List I with List II and select the correct answer using the code given below the lists:

	List I	0	List II
Mea	asuring device		Formula used
Α.	Venturi	1.	$O = \frac{C_d A_2 \sqrt{2gh}}{1}$
	meter		$1 - \left(\frac{C_{c}.A_{2}}{A_{1}}\right)^{2}$
В.	Orifice meter	2.	$Q = \frac{8}{15} C_d \sqrt{2g}$
			$\tan \frac{\theta}{2} \cdot H^{2.5}$
C.	Pitot tube	3.	$Q = \frac{C_d A_1 \sqrt{2gh}}{\sqrt{2gh}}$
			$\sqrt{\left(\frac{A_1}{A_2}\right)}$ -1
D.	Triangular weir	4.	$V = C_V \sqrt{\frac{2g(p_s - p_o)}{W}}$

Page 8 of 13

								-
	Code:	٨	Б	6	P	81.	Which	n on
	(a)	A 2	B	L 1	D		nomo	igen
	(a) (h)	2	4 1	1	3 2		attino	utes
	(c)	2	1	4	3		(a)	V
	(d)	3	1	4	2		(1)	
	. ,						(d)	V
76.	All mine	or losses	in a 1	5 cm dia	ameter pipeline		(c)	Р
	add un	to (16V	2	hat is th	a aguivalant			
	auu up	$10\left(\frac{-2g}{2g}\right)$	vv	nat is ti	le equivalent	•	(d)	Ν
	lenath (of a pipe	line of	same d	iameter with		(u)	
	Darcy's	f = 0.3	for this	conditi	ion?			
	(a)	160 m				- 82.	A real	l flu dom
	(b)	80 m					X. frc	uary ml
	(c)	20 m				-	numh	or i
	(d)	9 m				(0)	δγιμ	Ata
77		necuro at	tho no	so of a	1/5 scalo modo		numb	or b
//.	torpedo	tested	in fresh	n water	at 12.3 m/s is	· <u> </u>	the h	nin
	1.64 kg	/cm ² gre	eater th	an the	free stream	U	(a)	2
	pressur	e upstre	am of t	the torp	edo nose. What		(h)	1
	would b	be the pr	essure	on the	nose of the	9	(0)	I
	prototy	pe torpe	do ope	rated ir	n seawater above	e 👦	(c)	1
	the loca	al free st	ream p	ressure	upstream of its		(d)	0
	nose? (Specific	gravity	OF Seal	water is 1.025,			
	freshwa	ator)		sity bei	ly the same as t	83.	A ver	y lar
	(Revno	lds' conc	lition p	revails)			atmos	sphe
	(a)	0.132 k	a/cm ²	ovano.,			= 0.0	25,
	(b)	0.118 k	g/cm ²				level i	is at
	(c)	0.084 k	g/cm ²				the ax	xis c
	(d)	0.064 k	g/cm ²				availa	ble
							pipeili	ne,
78.	A liquid	l of kiner	natic v	iscosity	1.2 stokes is to	be U	iuncti	on
	pumpeo	a throug	n a pip	e or IU	cm dia. What W	^{////}	midw	av r
	under l	aminar f	In HOW	ndition?	e (in cumec),		are to	be
	(a)	5.2×10^{-10}	0 ⁻³ π			o	discha	arge
	(a) (b)	6 × 10 ⁻	³ π			_	(a)	1
	(c)	9 × 10 ⁻	³ π				(b)	2
	(d)	6.4 × 1	0 ⁻³ π			\leq	(C)	5
							(u)	0
79.	A river	model is	constr	ucted to	o a horizontal sc	ale 84 .	A con	npol
	OT I : I	000 and	a verti	cal scal m^3/c	e of I: 100. If t	ine bo	seque	entia
	corresp	uischary	tischar	$\frac{111}{10}$ in m ²	³ /s in the		seque	entia
	nrototy	ne?	lischar	ye in m			pipe o	of ui
	(a)	10^3					total I	leng
	(b)	10 ⁴					Whick	ו on
	(c)	10 ⁵					equiv	aler
	(d)	10 ⁶				O	(a)	-
00	۸			200 - (am ² in			(
ðU.	A press		ease of r by 0 1	200 N/0 1% \//b	un increases th at is the bulk		(b)	_
	modulu		ticity o	i 70. VVI f water	7		. /	(
	(a)	200 GN	$/m^2$, water			(c)	
	(b)	20 GN/	m ²			-		(
	(c)	2 GN/m	1 ²					

0.2 GN/m² (d)

ne of the following is a dimensionally neous equation with no additional s called for?

(a)
$$V = \frac{1}{n} \cdot R^{2/3} \cdot S^{1/2}$$

(b)
$$V = C \sqrt{R} S$$

(c)
$$P = \frac{32\mu VL}{D^2}$$

(d)
$$N_S = \frac{N\sqrt{P}}{H^{5/4}}$$

id flows over a flat plate and a laminar layer is formed over it. At a distance eading edge, the local Reynolds's s 8100 and boundary layer thickness is distance X₂ where local Reynolds'

> nas increased to 22500, what would be dary layer thickness?

- 2.78δ_{X1}
- $.67 \delta_{\chi_1}$
- $.23 \delta_{X_1}$
-).**60**δ_{χ1}
- rge and open reservoir discharges into ere through a 100 m long, 25 cm dia, f pipeline laid horizontally. The reservoir a constant height of 4.905 m above of the pipe. Intending to augment the discharge at the outfall end of the the latter half of the pipeline is d with an exactly similar pipe through a chamber (under pressure) at the point. All losses other than by friction neglected. What is the combined e available at the outfall end?
 - 3%
 - 6.5% 50%
 - 6.7%
 - und pipe of diameter d_1 , d_2 and d_3 ally having lengths I_1 , I_2 and I_3 also ally is to be replaced by an equivalent niform diameter d and of the same th I as tht of the compound pipe. ne of the following defines the nt pipe condition correctly?

a)
$$\frac{1}{d^2} = \frac{1}{d_1^2} + \frac{1}{d_2^2} + \frac{1}{d_3^2}$$

(b)
$$\frac{l}{d^3} = \frac{l_1}{d_1^3} + \frac{l_2}{d_2^3} + \frac{l_3}{d_3^3}$$

- $\frac{I}{d^4} = \frac{I_1}{d_1^4} + \frac{I_2}{d_2^4} + \frac{I_3}{d_3^4}$
- $\frac{l}{d^5} = \frac{l_1}{d_1^5} + \frac{l_2}{d_2^5} + \frac{l_3}{d_3^5}$ (d)

Page 9 of 13

Civil Service Examination: Civil Engineering guestion paper 2009

								94001	· • · · P •	- · · · -		
85.	The I oil at pipe	nead loss in a flow rate is replaced b	a pipe of d Q over a d by another	iameter d cai istance l is h. one with its	rrying The	90.	Matc answ	h List I \ /er using List	with List the coc	II and le giver	select the n below the List I	correct e lists: I
	diam the s	eter d/2; all ame, what is	other para s the head	meters remai loss in the re	ining placed	1	Α.	Disnfec Chlorin	tant Ie	1.	Character Post-treat	ristic ment
	pipe? (a)	0.5 h	(b)	2 h			B.	UV ray	S	2.	required Residual	
	(c)	8 h	(d)	32 h		_					concentra some dura	tion for ation
86.	What hydra	is the ratio aulically mos	of bed wid t efficient t	th to depth in rapezoidal ch	n a nannel	•	C.	Ozone		3.	Physical disinfectar	nt
	sectio	on?			-		D.	Excess	lime	4.	Costlier	
	(a)	0.578	(b)	1.155	(Cod	e:	P	0	P	
	(C)	1.50	(u)	2.00	2	_	(2)	A 2	B 3	ل ا	1	
87.	For a	hvdraulic iu	imp formed	d in a horizon	ital		(b)	1	3	4	2	
	recta	ngular chani	nel, the co	njugate depth	ns are 1		(c)	2	4	3	1	
	m an	d 3 m. What	t is the loss	s of head in t	he		(d)	1	4	3	2	
	(a)	0.166 m	(b) (d)	0.66 m 2 00 m	(D ^{91.}	Wha	t is the h	nydroger	n ion co	oncentration	n in water
	(0)	1.00 111	(4)	2100 111	((a)	8 mc	ol/L	(b)	10⁻ ⁸ m	nol/L
88.	Matcl	h List I with	List II and	select the co	rrect		(c)	10 ⁸ r	nol/L	(d)	0.8 m	ol/L
	answ	er using the	code givei	n below the li	STS: C		Whee	tic the n	noct oor	nmanlu		tive for
	Ge	cometry of flor	OW	Related cond	ition C		purp	oses of a	chemical	l precip	itation trea	tment of
	۲ A	Wide	1		2	=	(a)	l ime	and sor	: ta		
		rectangula	•		((b)	Alum				
		channel wi	th n				(c)	Ferro	ous sulpl	nate		
		defined				-	(d)	Ozon	ie			
	В.	Gradually varied flow	2.	1 –	$\left(\frac{y_0}{v}\right)^{3.33}$	93.	Matc	h List I v	with List	II and	select the	correct
		profile with	1	$\frac{dy}{dx} = S_0$	$(\mathbf{J})^{3}$	1	answ	er using	the coc	le giver	h below the	e lists:
		denth alon	a	1	$-\left(\frac{y_c}{y_c}\right)$			LIST Wator b	I orpo		LIST I Dollutant cr	
		the flow	9		(y) _	⊐		disea	se			ausing
	C.	direction Gradually	3.	dF	7	5	Α.	Mottlin teeth	g of	1.	Salmonella	a bacteria
		varied flow	,	$\frac{dx}{dx} > 0$ if y =	> y _c	•	В.	Hepati	tis	2.	Vibrio bac	teria
		profile with	1			>	C.	Typhoi	d	3.	Virus	
		Increasing	a			>	D.	Cholera	а	4.	Fluoride	
		the flow	y			2	Coa	e: ^	P	C	П	
		direction			-	1	(a)	4	3	1	2	
	Code	e:				2	(b)	2	1	3	4	
		A E	3 C			1	(c)	4	1	3	2	
	(a)	1 3	8 2				(d)	2	1	1	4	
	(b)	2 3	8 1									
	(C)	1 2	2 3			94.	Wha	t is the r	naximur	n perm	issible limit	of
	(u)	۷ ا	3		-		nuor (a)	iue in ar מ 1 2 מ	na/l	aler?	15 m	n/l
89.	As pe	er IS 458 (19	971), what	is the test pr	essure	4	(c)	3.0 n	na/L	(b) (b)	0.8 m	g/⊏ a/L
	in or	dinary RCC p	pipes of 80	600 mm diar	meter/ 🕂	-	(-)	2.01	J. <u> </u>	(4)		<u> </u>
	(a)	2 kg/cm ²			+	9 5.	Wha	t is the r	naximur	n perm	issible limit	of
	(b)	3 kg/cm ²			(-1	chroi	mium in	drinking	y water	?	
	(C)	4 kg/cm ²				-1	(a)	0.01	mg/L	(b)	0.001	mg/L
	(a)	₀ кg/ст²					(C)	0.00	o mg/L	(d)	0.05 n	ng/L

						- 3	-			
96.	Consid 1.	er the following Calcium and r	g statem nagnesii	ents: um as	102.	Mato ansv	h List I ver using	with List I g the code	I and give	I select the correct in below the lists:
		bicarbonates	are resp	onsible for		CI	LIST	l		
	2		aness.	and in management by		21	uage tre		1	Purpose
	Ζ.	The carbonate	e narane	ess is measured by		А.	Digest	lon	Ι.	Increasing the
		the difference	biographic			Р	Condit	loning	2	Solids content
	n	naroness and	Dicarbol	nate naroness.		В.	Condi	lioning	Ζ.	Removal of organic
	3.	The non-carb		araness is		C	Flutzia	tion	n	and fatty acids
		measured by	the diffe			U.	Elutra	llion	3.	Improving
		the total hard	ness and	a the carbonate	•					drainability of
	4	naroness.		in a share of		P	Thisles		4	sludge
	4.		es and b			D.	THICKE	ening	4.	Removal of organic
		soulum are us	deace	as negative		Cod	. .			matter
	Which	of the stateme	uness.	a abovo is/aro		Cod	e:	D	c	D
	corroct		nts giver			(a)	A 1	Б 2	2	1
		1 2 and 4			•	(d) (h)	4	ა ა	2	1
	(a) (b)	1, 2 and 4			S	(d)	1	ა ე	2	4
	(u) (a)	1, 3 dilu 4				(J)	4	2	ა ი	1
	(C) (d)					(u)	I	Z	3	4
	(u)	3 Only			Ohoo	Moto	h liat l	with List I	امم	looloot the correct
07	lo who	t intonuolo oro	ranid ca	ad filtars to be	103.	Mate	II LISU I	willi LISU I		n below the lister
97.			apiu-sai		Q	ansv		j the code	give	
		U DY DACK-WASI	iiriy <i>:</i>			C	LISU	l footuro	D	LIST II
	(a) (b)	24 - 40 HOUS)			Ge		atwork	PL	alpose and/or effect
	(d)	10 – 15 days				, II			1	Nada (nathains
	(C)	I - 2 months				А.	10016	ewer thom	Ι.	Node (not being
	(a)	т week					noues	toby		start/end nodel)
00					_		absolu	llely d for i i		with either no
98.	what I	s the maximum	distanc	e between	O		neeue	u ioi i-j		ncoming activity of
	succes	sive mannoles	in sewer	s of diameter		Р	notati		2	
	more t	nan 1.5 m?	(1-)	200		В.	Arrow	S	Ζ.	
	(a)	/5 [1]	(d)	300 m		C	Nodo	iy ioop danalina	n	Tail to progress
	(C)	500 m	(u)	150 11	S	U.	Noue	uanyiiny	ა.	improvement of the
00	What i	a the order of F		noval officianov of						notwork
99.	a conti	s the order of E	tod bour		\square	П	Missor	d nodo	1	Activity pot
		10 to 200/	(h)			D.	numb	a noue	4.	specifically
	(a)	10 10 20%	(d)	40 10 00 %			numb			idontifiablo
	(C)	10 10 00 %	(u)	ADOVE 90%	o		progre	nco		Identinable
100	Which	one of the follo	wing do	coribos the chart		Cod	seque	nce)		
100.	vvnicn		wing de	scribes the short-	•	Cou	е: л	D	c	р
	(a)	Dotontion tim			\geq	(\mathbf{a})	A 2	р 2	1	4
	(a) (b)	Detention	t ratio			(a) (b)	1	2	1	4
	(U) (a)				\geq	(0)	4	2 1	י ר	3
	(C) (d)	Displace IDauli	officion	2) /	\geq	(J)	3	1	2	4
	(u)	Displacement	encienc	.y	>	(u)	4	I	Z	3
101	The di	fforont options	hat take	nlago in	\geq					
101.	ine ui	hie decomposit	inat take							
	fallow		ion proc							
	10110WI	ny: Alkalina farma	ntation							
	1. 2	Alkaline lerme								
	2.	Acid rermenta	ition							
	ঠ. 1	Aciu regressio	n) Nation		9					
	4.	wethane form	Iation							
	what i	s the correct se	quence	or occurrences of						
	tnese a	actions from ea	riler to la	ater?	+					
	(a)	2 - 1 - 3 - 4								
	(a)	2 - 3 - 1 - 4								
	(C) (c)	1 - 2 - 3 - 4								
	(a)	4 – 2 – 3 – 1								

ധ

ന

 \geq

 \geq

104. Which one of the following represents the curve of cumulative % value (y-axis) plotted against cumulative % number of items (x-axis) in respect of inventory?

105. 'Demand in units (X)' vs. 'percentage of exceedance time for demand (Y)' are tabulated. Profit per unit if 'demanded for' is Rs 4 loss per unit if 'not demanded for' is Re 0.50.

Х	0	100	200	300	400	500	550		
Υ	100	95	82	40	15	6	0		
	What is the optimal number of SKU?								
	(a)	431			(b)	443			
	(c)	454	ļ		(d)	465			

- 106. Consider two items of inventory whose annual consumption values are Rs 40 lakhs and Rs 2.5 lakhs, respectively. It is intended to purchase the items through a total of 25 orders per year. What is the optimum average inventory value? (a) Rs 1,00,000 (b) Rs 1,10,000 (c) Rs 1,25,000 (d) Rs 1,40,000
- 107. In a project of notational 4 months duration, the cumulative outgo and cumulative receipt of a contractor are shown. Outgo is through ABCDEFGHKLM and receipt is through NPQRSTVWYZ. Amounts are in thousands of rupees - cumulative, as indicated. What is the working capital required?
 - 700 (a)
 - (b) $[50 + 250 + 450 + 600 + 700] \div 5$
 - (c) $[50 + 250 + 150 + 220 + 90 + 40] \div 6$
 - (d) 370

108. Two activities A and B are segmented into four identically executable parts each, as shown in the ladder diagram. The expected duration of each of total A and total B is 16 days; the standard deviation of the expected duration of total A is 1.6 days and that of total B is 2.4 days. What is the standard deviation of the laddered network through its critical path? 2 53 days . (۲) 2 20 dave (a)

(a)	2.20 days	(a)	2.53 days
(c)	2.66 days	(d)	2.80 days

- 109. The ABC analysis is based on/applies to which one of the following?
 - Stock that can be readily available (a)
 - Probabilistic supply of stock (b)
 - (c) Speed of movement of stock
 - (d) Need level of stock
- 110. Consider the following studies with respect to an appraisal of a project: ധ
 - Engineering feasibility 1.
 - Financial feasibility 2.
 - 3. Economic feasibility
 - 4. Social feasibility
 - Identification and formulation 5.

Indicate the most preferable sequence amongst these (iteration is not considered?

- 5 4 1 3 2(a)
- 5 2 1 3 4 (b)
- 5 1 2 4 3 (c) 1 - 4 - 2 - 5 - 3
- (d)
- Insulation of 19 mm thickness on heating ducts 111. 5 will cost Rs. 22,000, which will yet result in annual heat loss in the system valued at Rs U 9,000. Insulation of thickness 25 mm will cost extra Rs 9,250, which will yet result in annual heat loss in the system valued at Rs 6,500. Any thickness of insulation will have a life of 9 years and evaluation is at 8% p.a. (for which CRF is 0.16 nearly). What is the nearest approximate value of incremental benefit-cost ratio? (a) 2.3 (b) 2.2 2.1 2.0 (c) (d)

Directions:

The following nine(9) items consist of two statements, on elabelled as 'Assertion9A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answers to these items using the code given below.

Codes:

(c)

(d)

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
 - A is true but R is false
 - A is false but R is true

112.	Assertion (A): Short-duration field tests will not reflect the performance of foundations on clayey soils.	12		
	Reason (R): Proximity effects of groundwater are not reflected in field tests.			
113.	Assertion (A): Under identical conditions, Rankine active earth pressure is greater than that by Coulomb.			
	Reason (R): In Coulomb analysis, the effect of wall friction is considered.			
114.	Assertion (A): Ideal shape of transition curve should be such that the rate of change of centrifugal acceleration is constant.	D		
	Reason (R): In an ideal transition curve, the length (along the curve) is inversely proportional to the radius.	S.		
115.	Assertion (A): Tube wells are expected to give discharge many times more than that given by			
	Reason (R): The area draining water into a	g		
	tube well is greater than that draining into an open well.	0		
116.	Assertion (A): Rainwater harvesting or			
	artificial recharging of groundwater minimizes the TDS level in subsurface water.			
	Reason (R): TDS level falls in subsurface water due to dilution.			
117	Assertion (A): Interface nodes when	S		
117.	connected to dated nodes in AOA network, may	U		
	down-end) part of the network with respect to			
	Reason (R): Given the zero date of the	q		
	project, EET or LET of the dated node often			
	gets wrongly computed.	\leq		
118.	Assertion (A): Material schedules may not always necessarily minimize the WC needs.	\geq		
	Reason (R): inadequate appreciation and implementation of balanced scientific policies based on APC analysis and ECO, together with	\geq		
	multiple site-shifting and handling or materials interfere in working capital management.			
		••		
119.	Assertion (A): In the absence of any of the relevant data, the economic life of any	9		
	equipment or project is set at 2 years.	+-		
	Reason (R): Salvage value drops off	<u> </u>		

significantly thereafter.

20. **Assertion (A):** The internal rate of return of a project is the discount rate which makes the net present value equal to zero, provided the present is defined as the 'zero date' of the project.

Reason (R): The internal rate of return represents the rate of return on unrecovered investment balance in the project.

End of Question Paper