1.	Which one of the following terms describes the	8.	The phellogen produces:
	increase in the performance of a cross when		(a) Phelloderm towards its outer and
	two different in bred lines are proceed?		(a) Theiloderni towards its outer and
	two different inbred lines are crossed?		secondary xylem towards its inner side
	(a) Heterozygotic		(b) Phelloderm towards its outer and
	(b) Heterosis	1	phellem towards its inner side
	(c) Heterogametic		(c) Phellem towards its outer and
	(c) Here was the		(c) Frienenn towards its burger side
	(d) Homogametic		phelioderm towards its inner side
		-	(d) Phellem towards its outer and
2.	Hardy-Weinberg equilibrium refers to:		secondary xylem towards its inner side
	(a) Stable mutation as a factor for		······································
	(a) Stable indiation as a factor for	- L	
	speciation and evolution	۲۰.	when two whoris of stamens are inserted in
	(b) Population genetics based on Mendelia	n 🦳	such a way that the members of the outer whorl
	laws to interpret evolutionary process	U)	are opposite the sepals and inner whorl
	(c) Microgeographic races as key		opposite the netals, the condition is known as
	(c) Microgeographic races as key		(a) Diplostomonous
	contributors to divergent evolutionary	_	(a) Diplostemonous
	tendencies	•	(b) Diadelphous
	(d) Random distribution of species in time		(c) Didynamous
	and space	S	(d) Obdiplostemonous
•			
3.	Meselson and Stakl used an isotope to	(1) ^{10.}	Family Labiatae can be easily identified with the
	demonstrate semi-conservative nature of DNA	ΨI	help of:
	duplication. Which isotope did they use?		(a) Spurred corolla and guadrangular stem
	(a) 14 C	4	(b) Vorticillastor infloroscopco and many
	$(a) \qquad c$		(b) Verticillaster innorescence and many
	(D) ^o H		stamens
	(c) ³² P		(c) Gynbasis style and four ovules
	(d) ¹⁵ N		(d) Two stigmas and regular corolla
			(2)
4	Answer the faller in a subjet maxim has recently		With an in a new ifama halow we to the family
4.	Among the following, which group has recently	— [L I.	withania somnifera belongs to the family:
	originated?		(a) Malvaceae
	(a) Gnetales		(b) Magnoliaceae
	(h) Cycadales		(c) Solanaceae
	(b) Deprestiteles		(d) Starauliaaaaa
	(c) Bennetillales		(d) Stercullaceae
	(d) Coniferales	\sim	
		12.	Which one of the following pairs is correctly
5	What is the correct sequence in which the		matched?
0.	following plants appeared on the earth?		(a) Solanacoao : Adolphous condition
	1. Rhynia		(b) Malvaceae : syngenesious condition
	2. Williamsonia		(c) Brassicaceae : Didynarmous condition
	3. Lvainodendro	9	(d) Acanthaceae : Retinaculum
	4 Magnolia		
	Calent the compact encourse union the code since	13	Consider the following pairs:
	Select the correct answer using the code given		1 Chloring
	below:	\geq	1. Childriffe . Involved in O_2
	(a) 1, 2, 3, 4		evolution during
	(b) 1, 3, 2, 4	\geq	photosynthesis
	(a) 2 1 2 4		2. Iron : Constituent of
	(0) 2, 1, 3, 4		cytochromes
	(d) 1, 3, 4, 2	\leq	2 Culabura Constituent of
			3. Sulphur : Constituent of
6.	Bicollateral vascular bundles occur in which of		Coenzyme A
0.	the following families?		Which of the pairs given above are correctly
			matched?
	(a) Cruciferae		(a) 1 and 2 only
	(b) Gramineae		(a) Tanu z only
	(c) Solanaceae		(b) 2 and 3 only
	(d) Castaceae		(c) 1 and 3 only
			(d) 1.2 and 3
7.	Phelloids differ from phellem cells in:	+h_1	What is the adible part in lack fruit?
	(a) Lacking the suberin lamellae	14.	
	(b) Lacking the lignin deposition		(a) thaiamus
	(c) having a different origin	-	(b) Ovary (ripened)
			(c) Perianth and seeds
	(d) Being the product of cambial activity		(d) Fleshy aril
			(a) Hostiyani

of

15.	Whick	n one of the following genera shows Is in xylem?	22.	Consi 1	der the fo	ollowing	g state	ements: delaying the c	nset of
	(a)	Cycas		1.	leaf ab	scission	n	ucidying the c	
	(b)	Pinus		2		svnthe	sized	primarily in the	- roots
	(c) (c)	Gnetum		Which	n of the st	tateme	nts ai	ven above is/a	re ire
	(d)	Marsilea		correc	ct?		into gi		
16.	Whick	n one of the following is devoid of nucleus?		(a) (b)	1 only 2 only				
	(a)	Mature sieve element		(c)	Both 1	and 2			
	(b)	Guard cell of stomata		(d)	Neithe	r 1 nor	2		
	(c)	Collenchyma cell							
	(d)	Companion cell	23.	Match	n List I wi [.]	th List	II and	I select the co	rrect
			\square	answe	er using t	he cod	e give	n below the lis	sts:
17.	Consi	der the following statements:			List I		-	List II	
	1.	There is no sexual reproduction in blue-			Characte	rs		Families	
		green algae.		Α.	Cruciforr	n	1.	Malvaceae	
	2.	There are no marine species of blue-			Corolla				
		green algae.		В.	Syngene	sious	2.	Brassicaceae	2
	Whick	n of the statements given above is/are			stamens				
	corre	ct?		С.	Spikelet		3.	Poaceae	
	(a)	1 only	Ш	D.	Epicalyx		4.	Apiaceae	
	(b)	2 only		Code	:				
	(C)	Both 1 and 2			Α	В	С	D	
	(d)	Neither 1 nor 2		(a)	2	4	5	1	
10				(b)	2	3	4	1	
18.	Lodic	ules represent the reduced perianth in:	4	(C)	1	4	5	2	
	(a)	Sedges		(d)	1	3	4	2	
	(b)	Grasses							
	(C)	Rushes	O^{24} .	In wh	lich one o	f the fo	ollowii	ng are heteroc	ysts
	(a)	Composites		seen?	, N				
10	Dictor	at hybridization studies indicate that the		(a)	NOSTOC				
19.	Distai	It hybridization studies indicate that the		(D)	Chara	honio			
	ic	st relative of wheat, among the following,	S	(J) (d)	Polysip	nonia			
	13. (a)	Sorahum		(u)	Spirog	yia			
	(a) (h)	Oat	25	Which	n one of t	ha folla	wina	is a rootless fo	necil
	(C) (C)	Rve	\square^{23}	nlant?	7 ONE OF (wing	13 a 100tiess it	5311
	(d)	Rice		(a)	Ienidor	lendror	า		
	()		O	(u) (b)	l vaino	nteris	•		
20.	Consi	der the following statements:		(c)	Rhynia	prono			
	1.	Chloroplasts synthesize some of the		(d)	William	nsonia			
		proteins that are essential for	\leq						
		photosynthesis.	26.	In the	e sporoph	yte of l	Bryale	es, archesporiu	m
	2.	Mitochondria proliferate through the	\leq	origin	ates from	1:			
		division by fission of pre-existing		(a)	Endoth	necium			
		mitochondria.	\leq	(b)	Endoth	nelium			
	Whick	n of the statements given above is/are		(C)	Amphi	theciun	า		
	correc	ct?		(d)	Perithe	ecium			
	(a)	1 only	27	Consi	dar tha fo	llowing	·۲		
	(b)	2 only	27.	1	Selaair	nowing	j.		
	(c)	Both 1 and 2		1. 2	Isnetes				
	(d)	Neither 1 nor 2	Q	2. 3	Marsile	2 2			
	-			4	Azolla				
21.	Fungi	without sexual or perfect stages are		Which	n of the al	bove a	re h et	erosporous	
	classi	tied as:		pterid	lophytes?				
	(a)	Phycomycetes		(a)	1, 2 ar	nd 3 on	ly		
	(a)	Dermatomycetes		(b)	2, 3 ar	nd 4 on	ly		
	(C)			(c)	1 and	4 only			
	(a)	Ascomycetes		(d)	1, 2, 3	and 4			

				-		-			
28.	Match answ	n List I v er using List	with List I the code	I and givei	select the correct n below the lists:		33.	With replants,	eference to photosynthesis in higher which one of the following statements is
	N.	fiving	• Ionora)	((Froun they belong)			(2)	The Cupathway requires 21 ATP
	A 112	Cloctrid		1	Acrobia bastaria			(a)	meloculos for the sunthesis of one
	A.			1.					
	В.	Rhodo	spirilium	Ζ.	Facultative bacteria			(1.)	molecule of glucose.
	C.	Azotob	acter	3.	Non-photosynthetic			(b)	The C ₄ Pathway requires 30 ATP
					anaerobic bacteria				molecules for the synthesis of one
	D.	Klebsie	ella	4.	Photosynthetic				molecule of glucose.
					anaerobic bacteria			(c)	In C ₄ Pathway, Phosphoenol pyruvate is
	Code):						• •	generated in the bundle sheath cells
		Α	В	С	D	-			and transported to mesophyll cells.
	(a)	2	4	1	3	(1)		(d)	In C ₂ Pathway, six molecules of
	(a)	2	1	1	3	-		(4)	nhosphoglyceraldebyde and two
	(\mathbf{c})	2	1	1	3				moloculos of ATP are required to
	(J)	ວ ວ	4	1	2				regenerate DuPD
	(u)	3	I	4	Z	•			regenerate Rubp.
20	W/bick	h and of	the fello	wing	chamical is used for	S	24	Undor	water stress, the leaves of plants are
29.	VVIIICI		une rono an inta ab	wing	ble form by planta?		54.	found	water stress, the leaves of plains are
	CONVE		on into ac	SOLDS	ible form by plants?	<u> </u>			
	(a)	Dinit	rophenol			(1)		(a)	Gibberellic acid
	(b)	Diph	enyl carba	azide		U		(b)	Cytokinins
	(C)	Ethyl	ene-diam	ine-te	etra-acetic acid	\mathbf{O}		(c)	Auxins
	(d)	paraa	aminoben	zoic a	ncid		t i	(d)	Abscisis acid
		-				$\overline{\Omega}$			
30.	Whick	h one of	the follo	wina i	is the correct		35.	With re	eference to C ₄ Pathway of photosynthesis,
	seque	ence of	the three	cellio	roanelles involved in	O		which a	one of the following statements is not
	nhoto	resnirat	tion?	0011 0	rganonos involvou in		l i	correct	7
	(2)	Chlor	conlact v	mito	chondrion			(2)	Atmospheric CO, is accepted by a 3_{-}
	(a)	Doro	upiast →	mito				(a)	carbon compound
	(h)	Pero.		Chia	ranlaat	\bigcirc		(h)	The first product formed ofter
	(a)	Pero	$x_{isome} \rightarrow$	- Chio	ropiast →			(a)	The first product formed after
	<i>(</i>)	Mito	chondrion	_					atmospheric CO ₂ assimilation is malic
	(C)	Chlor	roplast \rightarrow	Pero	xisome \rightarrow	+			acid.
		Mitod	chondrion			\mathbf{S}		(C)	Malic acid is transported from mesophyll
	(d)	Mitoo	chondrion	$\rightarrow Pe$	eroxisome \rightarrow				cells to bundle sheath cells.
		Chlor	roplast			\mathbb{O}		(d)	The Calvin cycle takes place in bundle
						_			sheath cells.
31.	Consi	der the	following	state	ments:				
	1.	Tran	sposons a	are res	sponsible for		36.	Which	one of the following statement sis not
		muta	tion and	chron	hosome breakage.	\circ		correct	?
	2	In ha	ncteria so	nme tr	ansnosons carry			(a)	The gamete bearing phase of moss
	2.	nene	s for antil	hintic	resistance			(4)	nlant is hanloid
	Whick	h of tho	statomor	oto aiv	ion abovo is/aro	\geq		(h)	Bryonhytes have a multi-cellular
	corro		Statemen	its yiv				(0)	sporophytic apporation
		رار 1 میرا				>		(c)	All the forms have underground and
	(a)	I on	У			>		(C)	
	(b)	2 on	у						horizontally growing steams called
	(c)	Both	1 and 2			\leq			rhizomes.
	(d)	Neith	ner 1 nor 2	2				(d)	Ferns form the largest living group of
									primitive vascular plants.
32.	The p	process	of photor	espira	tion in plants leads				
	to:		-	-	-	-4	37.	Which	one of the following mineral elements
	(a)	Relea	ase of enh	nance	d levels of CO ₂			plays a	n important role in photosynthetic
	(h)	Rem	oval of wa	aste n	netabolites	\frown		oxvaer	evolution?
	(\sim)		ring of th	ne effi	ciency of		t	(a)	Magnesium
	(0)	nhot	nsvnthatie	n carh	on fivation			(h)	Manganese
	(4)	Enho	ncod plan	t vial	d			(c)	Malybdonum
	(u)	EIIIIa	nceu piar	it yiel	u	-		(J) (J)	Boron
								(u)	DUIUII

						6.1. 6.1I		
38.	Consid	der the following statem	ients:	45.	Which	one of the follow	wing tec	hniques is
	1.	β-oxidation of fatty a	cids involves the		emplo	yed to detect the	e protein	is of a particular
		reduction of $\frac{1}{2}$ O ₂ to	H_2O and		specifi	city?		
		formation of 1 NADH	and 1 FADH ₂ for		(a)	Western blotti	ng	
		each acetyl CoA prod	uced.	1	(b)	Southern blott	ing	
	2.	In plant seed storage	tissue, the		(c)	Northern blott	ing	
		enzymes associated v	with β-oxidation are	e 👝	(d)	Slot blotting	U U	
		localized in mitochon	dria		. ,	5		
	Which	of the statements give	n above is/are	46	Consid	ler the following	stateme	nts.
	correc	1°°° the statements give			Linkag	ie is a nhenomer	non in w	hich
	(a)	1 only (b)	2 only		1	linked gene do	nes not s	how independent
	(a) (c)	Both 1 and 2 (d)	Noithor 1 nor 2	+	1.	sographic de	003 1101 3	
	(0)				c	the intensity of	flinkago	botwoon two
20	Dhocn	borus is absorbed prime	arily in the form of		Ζ.	appos is direct	h in Raye	rtional to the
37.	ortho	nhoonhotoo, hut in whi	any in the form of			distance betw	aon thon	
		in coll?		_	2	the offect of live	een men nkaga is	n. more clearly
	OCCUI	IN SOIL?		-	3.		nkaye is	
	(a)			S				s generation.
	(d)				4.	the frequency	of recon	noination
	(C)	Irivalent				between two I	inked ge	nes cannot
	(d)	Both monovalent and	l divalent			exceed 50%		
		22			Which	of the statemen	nts given	above is/are
40.	Phosp	horus as ³² P is one of t	he radioactive	O	correc	t?		
	isotop	es commonly used in bi	iological studies.		(a)	1 only	(b)	1 and 4
	Its ha	If-life is:		a a	(c)	1, 2 and 3	(d)	2, 3 and 4
	(a)	14.3 days (b)	87.5 days					
	(C)	8.07 days (d)	3.2 days	Q 47.	With r	eference to the i	relative p	proportion of
					parent	al and recombin	ant pher	notypes in the
41.	A com	petitive inhibitor of ent	hylene-mediated		test-cr	oss progeny inv	olving tw	o recessive
	physic	ological responses is:			genes	'r' (round) and '	y' (yellov	v) controlling the
	(a)	Carbon monoxide			seed s	hape and seed of	colour re	spectively, the
	(b)	Carbon dioxide			observ	ed per cent reco	ombinant	ts is 10, then the
	(c)	Acetylene			map d	istance between	'r' and '	y' is:
	(d)	Nitrogen			(a)	10 map units	(b)	20 map units
					(c)	30 map units	(d)	5 map units
42.	Produ	ction of human protein	in bacteria by		(-)		()	
	genet	ic engineering is possibl	e because:	48.	Who f	or the first time	experime	entally
	(a)	A human chromosom	e can replicate in		demor	nstrated that only	y DNA of	f the
	(4)	bacterial cell			bacter	iophage enters t	the host	cell and not the
	(b)	The mechanism of de	ne regulation is	O	phage	protein?		
	(6)	identical in humans a	nd hacteria		(a)	Beadle and Ta	itum	
	(c)	Bacterial cell can carr	v out the RNA		(b)	Jacob and Mor	nod	
	(0)	splicing reactions	y out the kink	\geq	(c)	Luria and Delb	oruck	
	(d)	The genetic code is u	nivorsal		(d)	Hershev and C	Chase	
	(u)	The genetic code is u		\geq	. /	,		
12	Which	ono of the following by	actoria has found	4 9.	The di	ploid chromoson	ne numb	er of the garden
43.	ovtop	rune or the following ba	acteria nas iounu	\geq	pea is	2n = 14. How m	nany diff	erent trisomics
	exten	sive use in genetic engli	leering work in	\geq	could	be formed in this	s plant?	
		Aarobootoriumo tumoof	i a a la ma		(a)	7	(b)	14
	(a)		auleris		(c)	21	(d)	42
	(d)	Clostriaium septicum			.,		• •	
	(C)			5 0.	The pr	ophase of meios	sis is dist	inct from that of
	(a)	Bacilius coaguiens			mitosi	s. The main diffe	erence lie	es in:
	14/1-1-1			\Box	(a)	Formation of b	pivalents	by the
44.	wnich	or the following codon	s do not specify	اب		homologous cl	hromoso	mes.
	amino	acids and are known a	s non-sense		(b)	Presence of lo	ng, non-	condensed
	codon	S?		+		chromosomes.		
	(a)	CUU, GUC, GUA			(c)	Each chromos	ome tho	ugh apparently
	(b)	UAA, UAG, UGA				looks like a sir	ngle threa	ad, is actually
	(c)	GCU, GCC, GCA				made up of tw	o thread	ls.
	(d)	GGU, GGC, GGA			(d)	The chromoso	me is ric	h in DNA

Page 4 of 10

		<i>,</i> , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
51.	The centromere or primary constriction of the chromosome contains rings of proteins that are	Which of the statements given above is/are correct?
	intimately associated with a spindle fibre. These	(a) 1 only
	rings are called:	(b) 2 only
	(a) Centrioles	(c) Both 1 and 2
	(b) Secondary constrictions	(d) neither 1 nor 2
	(c) Asters	
	(d) Kinetochores	58. Which one of the following tissues is not a
	·—	nutritive tissue?
52.	The mechanism in which the rate of the solute	(a) Tapetum
	movement increases by interaction of	(b) Endosperm
	trqansmembrane proteins is termed as:	(c) Endothelium
	(a) Endocytosis	(d) Endothecium
	(b) Simple diffusion	
	(c) Facilitated diffusion	59. The protein in the pollen wall that causes allergy
	(d) Active transport	is contributed by:
	(0)	(a) Exine
53.	A diploid plant species of $2n = 16$ chromosomes	(b) Pollen cytoplasm
	was hybridized with one having $2n = 12$	(c) Tapetum
	chromosomes. Surprisingly, the breeder found	(d) Intine
	the hybrid to be an allotetraploid (amphidiploid). Ψ	
	How many chromosomes can he expect in it?	50. Fluorescein diacetate is used to test pollen
	(a) 24	viability based on the activity of which one of
	(b) 28 🔊	the following enzymes?
	(c) 32	(a) Catalase
	(d) 56	(b) Amylase
	_	(c) Esterase
54.	Freshly broken chromosomal ends are sticky	(d) Callase
	and tend to fuse. However, the ends of intact	
	chromosomes are stable and do not fuse in	51. Russell et al demonstrated the occurrence of
	spite of presence of DNA ligase in the nucleus.	dimorphic sperms in the pollen of:
	Which of the following could explain the stability +	(a) Amaryllis
	of chromosomal ends?	(b) Clivia
	(a) Presence of centromeric sequences	(c) Plumbago
	(b) Presence of repeated sequences	(d) Orchis
	(c) Presence of specific membrane around	
	the chromosomes	52. Which one of the following features is not
	(d) Presence of telomeric sequences	associated with grasses?
		(a) Aleurone tissue
55.	Semiconservative replication of eukaryotic	(b) Scutellum
	genetic material was first demonstrated by	(c) Cellular endosperm
	laylor et al using root tip cells of	(d) 3-celled pollen
	(a) Pisum sativum	
	(b) Vigna acontitifolia >6	53. In all, a minimum of now many melotic divisions
	(c) Arabidopsis thaliana	are required to form 100 sexual seeds?
	(d) Vicia faba S	(a) 25
Γ.		(b) 50
56.	which one of the following sub-cellular	(c) 100
	structures is enclosed by a nair unit membrane?	(d) 100
	(a) Vacuole	(d) 125
	(D) Vesicie	
	(c) Oleosonie Of	54. In which one of the following plants is
		pollination said to be entomophilus?
67	Consider the following statements:	(a) Zostera marina
57.	1 Algurong tissue forms the outermost	(b) Sterlitzia reginae
	laver of endosperm in maizo	(c) Aristolochia fimbriata
	2 Algurang tissue bolns in the putrition of	
	2. Alculote ussue ficips in the fluctuon of	(d) Kigelia africana
	embryo during germination.	

			Civil S	Servi	ce Examinatior	n: Bota	iny c	ques	tion p	bape	r 20	09		
65.	Matc answ	h List I v ver using List	with List I the code	II and e give	select the correct n below the lists: List II	71	•	Whic inflor (a)	h one c escenc Catl	of the f e is fou kin	follov und i	ving in Bai (b)	types of nana? Corymb	
	ł	-mbryolo	ogical		Plant			(C)	Spa	dix		(d)	Spike	
	A.	Featur Longiti Divisio Zygote	res udinal n of	1.	Cyperus	72		Match List I with List II and select the correct answer using the code given below the lists List I List II						orrect ists:
	В.	Only o the fou	ne of Ir	2.	Dendropthoe				Pla	nt		Par	propagation	getative on
		micros a tetra functio	pores in d is mal			et		A. B. C.	Agave Ginge Mint	e r		1. 2. 3.	Flower bud Rhizome Runner	
	C.	Plant		3.	Zea			Code	э: л	D		c		
		regene	eration					(a)	1	Р 2		2		
		from ir	n vitro					(a) (b)	1	2		ა 1		
		fertilize	ed egg			()		(u)	3 1	2		ו ר		
	Code	e:						(U) (d)	1	د ۱		2		
		Α	В	С		<u> </u>		(u)	Z	I		3		
	(a)	1	2	3		1 173		In ar	naiospe	rms n	orma	allv af	ter fertilizati	n.
	(b)	3	1	2			•	(a)	the	zvante	ivih د	des t	efore the div	vision of
	(c)	1	3	2		O		(u)	the	nrimar	v en	dosn	erm	
	(d)	2	1	3				(h)	the	nrimar	y en	dosp	erm nucleus	divides
						J		(0)	hefr	ore the	, divi	sion	of the zvante	annacs
66.	The a	adventiv	e embry	o initia	Ils in Citrus			(c)	both	$h t h \alpha z$	vant	a and	the primary	
	differ	rentiate:				9		(0)	and	nsnorn	n nu		divido	
	(a)	Befo	re pollina	ition					sim	ultanoo	n nuv Suchv		uivide	
	(b)	After	pollinati	on				(d)	both	$\frac{1}{2}$	vant	o and	the primary	
	(C)	After	fertilizat	ion				(u)	ond	n the Z	yyut n nu		undorgo a r	octina
	(d)	After	the divis	sion of	zygote				nori	od and	t that	n div	ido simultan	sung
									pen	ou and		ii uiv		ousiy.
67.	What	t is uniq	ue about	the e	mbryogenesis in	+ 74		in na	ture, th	ne orch	nid se	eeds	germinate or	ıly in
	Paeo	nia?				$\langle O \rangle$		asso	ciation	with:			5	5
	(a)	Intra	seminal	growtl	า	Ŭ ĺ		(a)	Myx	omyce	etes			
	(b)	Long	dorman	cy of z	zygote	\mathbb{O}		(b)	Mvc	orrhiza	a			
	(c)	Free	nuclear	divisio	ns in the zygote			(c)	Blue	e areer	n alq	ae		
	(d)	Oblic	ue divisi	on of	the zygote			(d)	Acti	nomyc	etes			
68.	In th	e endos	permous	seeds	the growth of the	O 75		Restriction enzymes are used in genetic						
		yo start	S:			•		engir	The	becau	se:	d:ffar	ant DNA frag	manta
	(a)		urrently		ne endosperm	\geq		(a)	The	y can j	join (ent DNA Irag	ments.
	(D)	Bero	re the en	aospe	rm starts growing	\geq		(d)	Ine	y can o	cleav	e Div	A at a specif	ic target
	(C)	After	the end	osperr	n has started	>		(-)	SITE					
	(1)	grow	ung			\geq		(C)	Ine	y are r	nucie	ases	that cut DNA	at
	(d)	After	the end	osperr	n is fully developed			())	vari	able si	tes.			
(0)		I				\leq		(a)	Ine	y are p	prote	olytic	enzymes wi	nich can
69.	whic	n one of	the folio	wing	structures arises				deg	rade h	armf	ul en	zymes.	
	trom	the tun	culus au	ring p	ost tertilization	76		\//hic	h one c	of tha f	Follov	vina	statomonts	
	deve	lopment	of the o	vule?				rogai	rdina th		tonor	rindis	m in nlants i	s not
	(a)	Caru	ncle					corre	ang ti act?		iopei	10013		5 1101
	(b)	Aril						(2)	In n	lants	tho r	abyto	chromo is in	Jolyod
	(C)	Oper	culum			Q		(a)	in p	nants, Nasturi	ina ti	ho loi	ath of day	voiveu
	(d)	Peris	perm					(h)	Dhv	tochro	mo n	no ici notei	ns protein a	hd
								(0)	riiy culo	bur	me C	Jund	ns protein al	iu
70.	In sp	orophyt	ic self ind	compa	tibility, S_1S_2 plants	<u>+- </u>		(c)	Suip	thium	ctrur	mariu	m is a long a	lav
	woul	d be cor	npatible	with tl	ne plants carrying:			(U)		ununn t or d	วเเนเ เ+ ศ.ศ	IIdi lu	in is a luliy (ay
	(a)	S_1S_2							piar			wers	ii nignts are	SHULLEL
	(b)	S_3S_4						(.1)	thar	ו ט.4 h	IOURS		- f	f = 17
	(c)	S_2S_3						(d)	In p	iants,	the s	sites	or perception	ror
	(d)	S_1S_4							nıgr	it leng	th ar	e you	ing leaves.	

77	Isotone	s have		84	Match	n list Iw	ith List	II and	select the correct
,,,	(a)	Same atomic number but different		01.	answe	er usina	the code	e aive	n below the lists:
	(4)	atomic weights			anom	List I		give	List II
	(b)	Same atomic number and same atomic			ſ	Name of	the		Name of Pathogen
	、 <i>/</i>	weights.				diseas	е		
	(c)	Different atomic numbers but same	/		Α.	Stem ro	ot of	1.	Erwinia carotovora
		atomic weight				paddy			
	(d)	Different atomic numbers and different			Β.	Wilt of o	cotton	2.	Colletotrichum
		atomic weights.							falcatum
					С.	Red rot	of	3.	Fusarium
78.	The hy	drostatic pressure developed within a	-			sugarca	ne		oxysporum
	plant ce	ell through osmosis and/or imbibition			D.	Soft rot	of	4.	Sclerotium oryzae
	when e	xerted on its wall is:	Φ			potato			
	(a)	Wall pressure			Code	:	_	-	_
	(b)	Osmotic pressure	<u> </u>			A	В	C	D
	(C)		•		(a)	3	4	1	2
	(a)	rurgor pressure	S		(D)	4	3	2	1
70	Which	and of the following onzymes is			(c) (d)	3 1	4	2 1	1
17.	associa	ted with the conversion of nitrate to	<u> </u>		(u)	4	3	I	2
	nitrite i	n the cytosol?	U	85	Heter	osporv a	nd oriai	n of s	eed habit was
	(a)	Nitrate reductase		00.	notice	ed for the	e first tir	ne in	
	(b)	Nitrite reductase	9	•	(a)	Isoete	es in et in		
	(c)	Glutamine synthase	σ		(b)	Lycop	odium		
	(d)	Glutamate synthase			(c)	Selagi	nella		
		-	Q		(d)	Marsil	ea		
80.	Which (one of the following classes of pigments							
	is not f	ound within the		86.	Whick	n one of	the follo	wing	bryophytes has
	chlorop	last/chromatophore in photosynthetic	0		stoma	ata prese	ent in the	e spo	rophyte?
	eukary	ote?			(a)	Riccia			
	(a)	Carotenoid (b) Anthocyanin			(b)	Dumo	rtiera		
	(0)	Phycocyanin (d) Phycoerythinn	+		(C)	Marcr	antia		
81	With ro	ference to the development of genetics	S		(u)	Antho	CEI 05		
01.	conside	r the following events:	(1)	87.	Reser	pine, an	active a	Ikaloi	id is obtained from:
	1.	Proposal of Operon model.	9		(a)	Atrop	e bellado	onna	
	2.	Discovery of the first RNA polymerase			(b)	Catha	ranthus	roseu	JS
	3.	Establishment of the complete genetic			(c)	Digita	lis purpu	urea	
		code.	0		(d)	Rauw	olfia ser	pentii	na
	What is	the correct chronological sequence of	•						
	the abo	ive?	>	88.	The d	levelopm	ient of s	omat	ic embryos was first
	(a)	I - 2 - 3 (b) $2 - I - 3$	>		obser	ved in ca	arrot sus	spens	ion cultures by:
	(C)	1 - 3 - 2 (u) $3 - 1 - 2$	\geq		(a) (b)	Doino	rt (1050	(1956)	8)
82	Tho ph	atoperiod required to induce flowering is	>		(a)	Braun	(1050))	
02.	referre	to as:	\geq		(d)	Guba	and Mal	hoshv	vari (1964)
	(a)	Short-day length	>		(u)	Guna		103110	
	(a) (b)	Long-day length	/	89.	Deo-o	aeo-woo-	aen is t	he na	me of a variety of:
	(c)	Critical day length			(a)	Rice	J		· · · · · · · · · · · · · · · · · · ·
	(d)	Intervening light period			(b)	Whea	t		
			• •		(c)	Maize			
83.	Which	one of the following bacteria is	0		(d)	china	grass		
	associa	ted with the seed gall nematode							
	(Anguir	na sp.) responsible for "Ear Cockle of	-	90.	"Vani	llin", a po	opular fl	avour	ring agent for ice
	wneat"	(Clavibactor tritici	+		cream	ns, is obt	ained fr	om:	
	(a) (b)	Gavibacier IIIICI Frwinia cartovora			(d) (b)	Lear			
	(u) (c)	Li willia cai lovola Clavibactor michiganopso			(u) (c)	Lalex Bark			
	(d)	Ralstonia solanacearum			(d)	Fruit			
					(u)	Tur			

_

91.	In prote	oplast fusion which one of the following	98.	Which a	one of the follow	ing grou	ips of gases
	compou	unds is used?		contribu	ute to the green	house ef	fect?
	(a)	Sorbitol		(a)	NH_3 , O_3 , H_2S		
	(b)	Polyethylene glycol	_	(b)	NO_2 , CO , SO_2		
	(C)	Dinitrophenol		(C)	CH_4 , N_2O , SO_2	h	
	(u)	Mannton		(u)		J	
92.	Which o	one of the following plants is a source of	9 9.	What is	the correct orde	er in whi	ch the following
	chuckle	gum, the basis of chewing gum		four pla	int species occur	on the	Himalayas
	industry	y?	•	starting	from the base of	of foothil	I to the alpine
	(a) (b)	Hevea brasiliensis		zone up	Wards?		
	(a)	Acacia senegal Aroca catochu		1. ว		ll onoda	
	(d)	Achras zonota		2. 3	Pinus wallichian	na	
	(u)			4 .	Shorea robusta	iu	
93.	Which o	one of the following pairs of tree species		Select t	he correct answ	er using	the code given
	is a rep	resentative of tropical wet evergreen	10	below:		Ū	C C
	forests	in India?		(a)	4, 1, 2, 3		
	(a)	Dipterocarpus grandiflorus and Hopea	<u> </u>	(b)	4, 1, 3, 2		
	(1.)	odorata		(C)	2, 4, 3, 1		
	(D) (c)	Cupressus forulosa and Picea morinda Rotula utilis and Diptorocarpus		(a)	1, 4, 2, 3		
	(U)	arandiflorus		Conside	er the following.		
	(d)	Boswellia serrata and Anogeissus		1.	Coral reefs		
	(4)	Latifolia		2.	Flood plains		
			9	3.	Mangrove areas	S	
94.	Welwits	schia mirabilis, one of the most peculiar		As per l	Ramsar Convent	ion, whi	ch of the above
	gymnos	spermous plants, is found only in:		is/are c	overed under th	e definit	ion of wetlands?
	(a)	South West Africa	0	(a)	1 and 2 only		
	(D) (c)	Western Australia		(D) (c)	2 and 3 only		
	(c) (d)	West Indies		(d)	3 only 1 2 and 3		
	(u)	West males		(u)			
9 5.	Which 1	type of relationship is shown by Lianas?	101.	Which a	one of the follow	ing does	s not belong to
	(a)	Protocooperation		in situ o	conservation?		
	(b)	Mutualism	_	(a)	Biosphere Rese	rve	
	(C) (d)	Amonsalism		(d) (a)	Botanical Garde	211	
	(u)	Amensalism	T	(d)	Wildlife Sanctua	arv	
96.	A partic	cular plant has various adaptations		()			
	namely	, (i) presence of soft spongy stem (ii)	>102.	With re	ference to enviro	onmenta	l pollution,
	presend	ce of air cavities in the leaf (iii) heavy		conside	r the following s	tatemen	its:
	reduction	on of vascular tissues and (IV) absence of	\geq	1. ว	Acid rains are c	aused by	$y H_2 SO_4$ ONIY.
	the play	at belong?	\geq	Z. NO. is i	not injurious to i	yiliy iliju olants	nous to plants,
	(a)	Fpiphyte	\geq	Which a	of the statement	s aiven a	above is/are
	(a) (b)	Hydrophyte		correct	?	e giroir (
	(c)	Xerophyte		(a)	1 only	(b)	2 only
	(d)	Halophyte		(c)	Both 1 and 2	(d)	Neither 1 nor 2
97.	Plants	which grow on the forest floor in tropical	1 03.	Conside	er the following s	statemer	nts:
	rain for	ests have:		1.	There are no xe	eroplytic	epiphytes.
	(a)	Leaves with thick cuticle	1	2.	There are no ep	oiphytic	orchids.
	(b)	Succulent small leaves	+	Which a	of the statement	s given a	above is/are
	(c)	Large light green leaves		correct	?		
	(d)	Large, dark green leaves		(a)	1 only	(b)	2 only
				(C)	BOIN T and 2	(a)	iveitner 1 nor 2

_

104	Conc	dar tha f	allowing	. ctoto	monto		W/biob	of the statement		ahava ia/ara
104.	1	lianin	contain	s long	n-chain fatty acids		correct	or the statement	s given	abuve is/ale
	2	Cutin	is a cark	nohvdi	rate nolymer		(a)	: 1 only		
	Z. Whic	h of the s	tatemer	nts aiv	iate polymen. ien ahove is/are		(a) (h)	2 only		
	corre	rt?	statemer	ns yn			(c)	Both 1 and 2		
	(a)		,				(d)	Neither 1 nor 2		
	(a) (h)	2 only	, ,				(u)			
	(c)	Both	1 and 2				Conside	er the following	stateme	nts·
	(d)	Neithe	er 1 nor	2			1.	Agrobacterium	tumefac	ciens is a soil
	(-)							bacterium.		
105.	Consi	der the f	ollowing	state	ments:		2.	Agrobacterium	tumefac	iens can infect
	1.	Memb	ers of A	, garica	ales infect roots to	-		the plant at the	e junctio	n between root
		form (ectotrop	hic m	ycorrhiza.	\square		and stem (crow	vn) only	
	2.	Mycor	rhizal ro	ots tak	e up nutrients better		Which	of the statement	s given	above is/are
		than ι	uninfecte	ed roo	vts.		correct	?		
	Whic	h of the s	statemer	nts giv	ven above is/are	-	(a)	1 only		
	corre	ct?				(0)	(b)	2 only		
	(a)	1 only	/				(c)	Both 1 and 2		
	(b)	2 only	/				(d)	Neither 1 nor 2		
	(C) (d)	Both ²	1 and 2	c		U110	Consid	or the following	statomo	nte
	(u)	Nettin		Z			1	Farly blight of r	notato is	caused by
106.	Cons	der the f	ollowing	ı pairs	:	9		Frwinia amvlov	ora.	
		Plant	: 3	,	Area of natural	D	2.	Late blight of p	otato is	caused by
					occurrences			Phytophthora in	nfestans	
	1.	Betula u	utilis	:	Western Himalayas	Q	Which	of the statement	s given	above is/are
	2.	Dendro	calamu	:	Temperate zone		correct	?	0	
		strictus					(a)	1 only		
	3.	Diospyr	OS	:	Temperate zone		(b)	2 only		
		melano	xylon				(c)	Both 1 and 2		
	Whick	h of the p	bairs giv	en ab	ove is/are correctly		(d)	Neither 1 nor 2		
	(a)		,			111	From w	which one of the	followin	a flowers is the
	(a) (h)	1 and	2 only			Shin.	insectio	ides 'nvrethrum'	derived	9 110 Wei 3 13 the
	(c)	2 and	3 only				(a)	Chrysanthemur	n	
	(d)	1.2 a	nd 3				(u) (b)	Iberis		
	()	.,					(c)	Nelumbo		
107.	Matcl	n List I w	ith List I	II and	select the correct		(d)	Rosa		
	answ	er using	the code	e give	n below the lists:		• •			
		List I			List II	- 112.	With re	eference to euka	ryotes, c	onsider the
		Plant			Oil extracted	>	followir	ng statements:		
	Α.	Cymbor	ogon	1.	Citronella oil	\geq	1.	The size of ribo	somes p	present in the
		flexuosi	JS	•		>		cytoplasm of al	I species	s of eukaryotes is
	В.	Cymbop	bogon	2.	Palma rosa and	\geq	2	same.		
	C	narous	ogon	2	ginger grass oli	>	2.	The size of ribo	somes p	oresent in
	υ.	martini	Jogon	ა.	arass oil	\geq		as compared to	u miloci s thosa f	ionuna is smaller
	Code	11101 (1111 1			grass on			cytoplasm	110361	
		A	В	С			Which	of the statement	s aiven	above is/are
	(a)	3	1	2			correct	?		
	(b)	2	1	3		•••	(a)	1 only	(b)	2 only
	(c)	3	2	1			(c)	Both 1 and 2	(d)	Neither 1 nor 2
	(d)	1	3	2						
100	Conc	dor tha f	ollowing	. ctata	monte	113.	Who po	ostulated the chr	omoson	ne basis of
100.	1	Ruet /	ปแบพแญ ปรอลรอร	are c	aused by the function	f T	(a)	Rateson	(b)	Bridges
		order	Uredina	les.	ausea by the fully 0		(a) (c)	Griffith	(d)	Morgan
	2.	Smut	diseases	s are d	caused by the function		(9)		(4)	morgan
		of ord	ler Ustila	ginale	es.					

114.	The m	utagen F	Proflavin	is a/	an:			120.
	(a) (b)	Alkalyla	e dye ating ag	ent				
	(c)	Base a	nalog					
	(d)	Hydrox	vlating	agent	t			
115.	The te	rm "Gen	etic loac	l" refe	ers to:			
	(a)	Sum to	otal of un	nfavo	urable	e genes in		
	(b)	reducti	on in vig	gour a	and fe	ertility in plant		
		species	S.			<u> </u>		
	(C)	specific	sed vigo c hybride	ur an	id size	of inter-		
	(d)	Increas	sed hom	ozyg	osity i	n the plant		
		progen	ıy.					
116.	Consid	er the fo	llowing	state	ments	5:	•	
	1.	One DI	NA cistro	on sp	ecifies	s one	S	
	2	polype In Ope	ptide ch	ain in Iel th	n prote	ein synthesis. Prator need no	, <u> </u>	
		always	be loca	ted c	ontigu	ious to the	لە `	
		structu	iral gene	e or g	enes v	whose		
	Which	of the st	sion it re tatemen	eguia ts giv	tes. ven ab	ove is/are		I
	correct	t?	atomon	to gri			م	
	(a)	1 only	and D	(b)	2	only	0	
	(C)	BOIN 1	and 2	(a)	IN	veitner i nor 2		
117.	Which	one of t	he follow	ving t	terms	is used to		
	due to	the upta	ake of n	or ne aked	bNA?	les by a cell	9	
	(a)	Transd	luction					
	(b)	Transf	action					
	(c) (d)	Coniuc	ation	1			S	
		J J					U	
118.	Consid	er the fo	ollowing	state	ments	S: rocont		
	1. 2.	In aico	n stern, nocot ste	en, e	ndode	ermis and		
		pericyc	le are ir	ndistir	nct.		Ч	
	Which	of the st	tatemen	ts giv	en ab	ove is/are		
	(a)	1 only		(b)	2	2 only	\leq	
	(c)	Both 1	and 2	(d)	Ν	leither 1 nor 2	\geq	
119.	Match	List I wi	th List II	and	select	t the correct		
	answe	r using t	he code	giver	n belo	w the lists:	\leq	
		List I			L	.ist drillis the		
		Plaill			modi	fication of		
	Α.	Gloriosa		1.	Leaf	tip		
	B. C	Nepenth Smilax	es	2. 3	Midri	b Ile		
	D.	Vitis		3. 4.	Term	ninal bud		I
	Code:			-	_			
	(a)	А 4	В 3	C 2	C)		
	(b)	4	2	2	1			
	(c)	1	3	2	4	ļ		
	(d)	1	2	3	4	Ļ		

-	_	-									
Match List I with List II and select the correct answer using the code given below the lists:											
	List I		0	List II							
	Fruit			Plant							
Α.	Acne		1.	Calotropis							
В.	Cypsela		2.	Nelumbiun	า						
C.	Follicle		3.	Mustard							
D.	Siliqua		4.	Tridax							
Code	e:										
	Α	В	С	D							
(a)	2	1	4	3							
(b)	2	4	1	3							
(C)	3	1	4	2							
(d)	3	4	1	2							

End of question paper