Questions on Oscillation, Paper 1

 $\overline{\mathcal{O}}$

5

(1)

 The length of second's pendulum on the surface of earth is 1 m. the length of same pendulum on the surface of moon, where acceleration due to gravity is (1/6)th of the g on the surface of earth is (NCERT 71)

(
(a)	36 m	(b)	1 m
(c)	<u>1</u> 36	(d)	$\frac{1}{6}$ m

2. A mass M is suspended from a light spring. If the additional mass m is added, it displaces the spring by a distance x. now the combined mass will oscillate on the spring with time period equals to **(CPMT 89)**

(a)
$$T = 2\pi \sqrt{\frac{mg}{x(M+m)}}$$
 (b) $T = 2\pi \sqrt{\frac{x(M+m)}{mg}}$
(c) $T = \frac{\pi}{2} \sqrt{\frac{mg}{x(M+m)}}$ (d) $T = \frac{\pi}{2} \sqrt{\frac{(M+m)}{mgx}}$

- 3. The displacement of particle performing simple harmonic motion is given by, $x = 8 \sin \omega t + 6 \cos \omega t$, where distance is in cm and time is in second. The amplitude of motion is **(MHT-CET-2005)** (a) 10 cm (b) 14 cm (c) 2 cm (d) 3.5 cm
- A simple pendulum is set up in a trolley which moves to the right with an acceleration a on a horizontal plane. Then the thread of the pendulum in the mean position makes an angle θ with the vertical (CPMT 83)
 - (a) $\tan^{-1}\left(\frac{a}{g}\right)$ in the forward direction (b) $\tan^{-1}\left(\frac{a}{g}\right)$ in the backward direction
 - (c) $\tan^{-1}\left(\frac{g}{a}\right)$ in the backward direction
 - (d) $\tan^{-1}\left(\frac{g}{a}\right)$ in the forward direction
- The angular velocity and the amplitude of a simple pendulum is 'ω' and 'a' respectively. At a displacement x from the mean position its kinetic energy is T and potential energy is V, then the ratio of T to V is (CBSE 91)

(a)
$$\frac{x^2 \omega^2}{a^2 - x^2 \omega^2}$$
 (b) $\frac{x^2}{(a^2 - x^2)}$
(c) $\frac{a^2 - x^2 \omega^2}{x^2 \omega^2}$ (d) $\frac{a^2 - x^2}{x^2}$

- A particle executes S.H.M. of amplitude A. at what distance from mean position its kinetic energy is equal to its potential energy? (MHT-CET 99)
 (a) 0.51 A
 (b) 0.61 A
 (c) 0.71 A
 (d) 0.81 A
- 7. A simple pendulum of length I and mass (bob) m is suspended vertically. The string makes an angle θ with the vertical. The restoring force acting on the pendulum, is (MHT-CET-2005)

 (a) mg tan θ
 (b) mg sin θ
 - (c) $\operatorname{mg} \sin \theta$ (d) $\operatorname{mg} \cos \theta$
- 8. The mass and diameter of a planet are twice those of earth. the period of oscillation of pendulum on this planet will be (if it is a second's pendulum on earth)
 - (IIT 73)
 - (a) $\frac{1}{\sqrt{2}}$ Second (b) $2 \times \sqrt{2}$ Second
 - (c) 2 second (d) $\frac{1}{2}$ Second
- 9. A second's pendulum is placed in space laboratory orbiting around the earth at a height 3R from earth's surface where R is earth's radius. The time period of the pendulum will be **(CPMT 89)**

(a)	Zero	(b)	2√3 s
(c)	4 s	(d)	Infinite

- 10. The pendulum is acts as second pendulum on earth. Its time on a planet, whose mass and diameter are twice that of earth, is (MHT-CET-2005)
 - (a) $\sqrt{2}$ s (b) 2 s (c) $2\sqrt{2}$ s (d) $1/\sqrt{2}$ s
- 11. A particle of mass m is hanging vertically by an ideal spring of force constant K. if the mass is made to oscillate vertically, its total energy is (CPMT 78)
 - (a) Maximum at extreme position
 - (b) Maximum at mean position
 - (c) Minimum at mean position
 - (d) Same at all positions
- 12. At a place where $g = 980 \text{ cm/sec}^2$. the length of seconds pendulum is about
 - (a) 50 cm (b) 100 cm
 - (c) 2 cm (d) 2 m

Oscillation

C

5

0

S

0

- The maximum velocity for particle in SHM is 0.16 m/s and maximum acceleration is 0.64 m/s². The amplitude is (MHT-CET-2004)
 - (a) 4×10^{-2} m (b) 4×10^{-1} m (c) 4×10 m (d) 4×10^{0} m
- 14. A particle is vibrating in S.H.M. with an amplitude of 4 cm. at what displacement from the equilibrium position is its energy half potential and half kinetic? (NCERT 84)
 - (a) 2.5 cm (b) $\sqrt{2}$ cm
 - (c) 3 cm (d) 2 cm
- 15. The time period of a spring pendulum is (CPMT 71)

(a)	$T = 2\pi \sqrt{\frac{m}{k}}$	(b)	$T = 2\pi \sqrt{\frac{2k}{m}}$
(c)	$T = 2\pi \sqrt{\frac{k}{m}}$	(d)	$T = \pi \sqrt{\frac{2m}{k}}$

- 16. The equation of displacement of particle performing SHM is X = 0.25 sin (200 t). The maximum velocity is (MHT-CET-2004)
 (a) 100 m/s
 (b) 200 m/s
 - (c) 50 m/s (d) 150 m/s
- 17. A pendulum suspended from the roof of a train has a period T (When the train is at rest). When the train is accelerating with a uniform acceleration 'a', the time period of the pendulum will **(NCERT 80)**
 - (a) Increase (b) Decrease
 - (c) Remain unaffected (d) Become infinite
- A particle executing a vibratory motion while passing through the mean position has (CPMT 92)
 - (a) Maximum P.E. and minimum K.E.
 - (b) Maximum K.E. and minimum P.E.
 - (c) P.E. and K.E. both maximum
 - (d) P.E. and K.E. both minimum
- 19. The frequency of wave is 0.002 Hz. Its time period is **(MHT-CET-2004)**
 - (a) 100 s (b) 500 s (c) 5000 s (d) 50 s
- A simple pendulum has a period T. it is taken inside a lift moving up with uniform acceleration g/3. now its time period will be (NCERT 90)

(a)	√2 T	(b)	$\frac{2T}{\sqrt{3}}$
(c)	$\frac{\sqrt{3}}{2}$ T	(d)	$\frac{3T}{\sqrt{2}}$

21. For a magnet of time period T magnetic moment is M, if the magnetic moment becomes one fourth of the initial value, then the time period of oscillation becomes.

(MHT CET 2006)

- (a) Half of initial value
- (b) One fourth of initial value
- (c) Double of initial value
- (d) Four time initial value
- 22. The value of displacement of particle performing SHM, when kinetic energy is (3/4)th of its total energy is **(MHT-CET-2004)**

(a)
$$x = \pm \frac{A}{2}$$
 (b) $x = \pm \frac{\sqrt{3A}}{2}$
(c) $x = \pm \frac{A}{4}$ (d) $x = \pm \frac{A}{\sqrt{2}}$

- 23. The shape of I T graph of simple pendulum is, (CPMT-92)
 - (a) Curve (b) Parabola
 - (c) Straight line (d) Hyperbola
- 24. A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration 'a' then the time period is given

T = $2\pi \sqrt{\frac{l}{g}}$, where g is equal to **(CBSE 91)** (a) υ ag (b) 3 - a(c) g + a (d) $\sqrt{g^2 + a^2}$

- 25. Two equal negative charges –q are fixed at point (0, a) and (0, –a) on the Y-axis A positive charge q is released from rest at point (2a, 0) on the X-axis. The charge Q will (IIT 83)
 - (a) Execute simple harmonic motion about the origin
 - (b) Move to the origin and remained at rest
 - (c) Move to infinity
 - (d) Execute oscillatory motion but not simple harmonic motion

Answers to Oscillation, Paper 1

1. Answer: (d)

- 2. Answer: (b)
- 3. Answer: (a)
- 4. Answer: (b)
- 5. Answer: (d) 6. Answer: (c)
- 7. Answer: (c)
- 8. Answer: (b)
- 9. Answer: (d)
- 10. Answer: (c)
- 11. Answer: (d)
- 12. Answer: (b)
- 13. Answer: (a)
- 14. Answer: (d)
- 15. Answer: (a)
- 17. Answer: (b)
- 18. Answer: (b)
- 19. Answer: (b)
- 20. Answer: (c)
- 21. Answer: (c)
- 22. Answer: (a)
- 23. Answer: (b)
- 24. Answer: (d)
- 25. Answer: (d)