Questions on Circular Motion Paper A

			α
1.	 In order to cause something to move in a circular path, we must apply (a) Inertial force (b) Centripetal force (c) Centrifugal force (d) Gravitational force 	8.	The angular velocity of a fly wheel in from 0 to 40 rad/s, in 8 seconds. Wh total angular displacement in this tim (a) 80 rad (b) 160 rad (c) 200 rad (d) 120 rad
2.	 In the case of uniform circular motion, which one of the following physical quantities does not remain constant? (a) mass (b) speed (c) linear momentum (d) kinetic energy 	ers.net	The angular velocity of a wheel is 70 If the radius of the wheel is 0.5 m, the velocity of the wheel is (a) 10 m/s (b) 20 m/s (c) 35 m/s (d) 70 m/s
3.	Kinetic energy of a particle moving along the circle is ax^2 . If R is the radius of the circle. The radial force on the particle is (a) $2 \frac{ax^2}{R}$ (b) $\left[\frac{1+x^2}{R^2}\right]^{1/2}$	d g d u o	 The banking angle is independent of (a) velocity of vehicle (b) mass of vehicle (c) radius of curvature of road (d) height of inclination
	(c) 2ax (d) $2 \frac{aR^2}{x}$	11. S	The driver of a car traveling at veloci suddenly sees a broad wall in front o
4.	 Maximum safe speed does not depend upon (a) radius of curvature (b) angle of inclination with the horizonta (c) mass of the vehicle (d) acceleration due to gravity 	v.que	a distance a. He should (a) break sharply (b) turn sharply (c) both a and b (d) none of the above
5.	The angle between radius vector and centripetal acceleration is (a) $\frac{\pi}{2}$ rad (b) 2π rad (c) $\frac{3\pi}{2}$ rad (d) π rad	12.	The earth (mass = 6×10^{24} kg), revealed around the sun with an angular velocities 10^{-7} rad/s, in a circular orbit of radiu 10^{8} k. The force exerted by the sum earth is (a) zero (b) 18×10^{20} N (c) 27×10^{30} N (d) 3.6×10^{22} N
6.	The angle described in 2 sec by an object rotating at a rate of 600 rpm is (a) 20 π rad (b) 40 π rad (c) 5 π rad (d) zero	13.	The K.E. (K) of a particle moving alo circle of radius r depends upon the d covered (s) as $K = as^2$. The centriper acting on the particle is given by (a) 2as (b) 2as ²
7.	The angular speed of a flywheel making 180		(c) $\frac{2as^2}{r}$

r.p.m. is

- (a) 2π rad/s
- (b) 4π rad/s
- (c) 6π rad/s
- (d) $3\pi^2$ rad/s

heel increases ds. What is its this time?

el is 70 rad/sec. 5 m, then linear

velocity v front of him at

-), revolves ar velocity of 2 \times f radius 1.5 × e sun on the
 - ng along a n the distance entripetal force by

 - $\frac{2ar}{s^2}$ (d)

14.	The maximum safe speed for a vehicle taking a turn on a curved banked road, does not depend upon (a) acceleration due to gravity			g 21.	What is the small horizontal road, a his speed is 36 kr inclination is 45°?
	(b) mas (c) ang	ss of the vehicle le of inclination (zontal	(θ) with the		(a) 25 m (b) 20 m (c) 15 m
	(d) radi	us of curvature of	of the track	U D	(d) 10 m
15.	The maximu circular trac becomes we km/hr. The the dry trac (a) 9 : (c) 2 :	Im safe speed of t is 15 km/hr. We t, the maximum ratio of coefficien k to that of Wet 4 (b) 3 (d)	a vehicle on a hen the track safe speed is 10 nt of friction of track is 3 : 2 1.5 : 1	22. 22.	What will be the r a road turn of rac of friction betwee 0.4 (Take g = 9.8 (a) 10.84 m/ (b) 9.84 m/s (c) 8.84 m/s (d) 6.84 m/s
16.	The maximu must drive h radius of cu friction 0.6, (take g = 10 (a) 60 n (c) 40 n	Im velocity with his car on a flat or rvature 150 m ar to avoid the skic 0 m/s ²) m/s (b) m/s (d)	which a driver curved road of nd coefficient of Iding of his car is 50 m/s 30 m/s	9 d g d u o 1	When a vehicle is curve road, centr (a) vertical c (b) horizonta reaction (c) frictional and tyres
17.	The radius of highway is I outer edge the inner ed can safely p h? (a) Rg bv ²	of a curved path R. The width of a of the road is rai lge, so that a car ass over it. Wha	on a national road is b. The sed by 'h' w.r.t. with a velocity N t is the value of $\frac{v^2b}{R}$	24. 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 (d) all of the When particle rev a circular path (a) no force (b) no accele (c) no work i (d) its velocities
	(c) $\frac{v}{bgl}$	(d)	$\frac{v^2b}{Rg}$	≥ 25.	When the angula rotating body has resultant of force
18.	The ratio of and hour ha (a) 6: 1 (c) 1 :	angular speed o nd of a watch is (b) 12 (d)	f minute hand 1: 6 12 : 1	r 1	60 N. find the acc cases if the mass (a) 2.5 m s^{-2} (b) 7.5 m s^{-2}
19.	The rider in in a vertical the highest (a) \sqrt{gI} (c) $\sqrt{3g}$	circus rides alon plane. The minin point of the track (b) gR (d)	g a circular track mum velocity at k will be $\sqrt{2gR}$ $\sqrt{5gR}$:	(d) 2.5 m s ⁻²
20.	What is the mass m atta which is jus circle, at the (a) 0 (c) 3 m	apparent weight ached at the end t completing the e lowest point in (b) g (d)	of a body of of a string and loop in a vertical its path? mg 6 mg	I	

lest radius of a curve on a at which a cyclist can travel if m/hour and the angle of $(g = 10 \text{ m/s}^2)$

maximum speed of a car on dius 30 m, if the coefficient en the tyres and the road is 3 m/s^2

- 's

- moving along the horizontal ipetal force is provided by
 - omponent of normal reaction
 - I component of normal
 - force between road surface
 - se
- volves with uniform speed on
 - acts on it
 - eration acts on it
 - is done by it
 - ty is constant
- r velocity of a uniformly increased thrice the s applied to it increases by celeration of the body in two of the body is 3 kg
 - ², 7.5 m s⁻²
 - ², 67.5 m s⁻²
 - 45 m s⁻²
 - ², 22.5 m s⁻²

S.net.1n

e r

npap

0

esti

w w w . d u

Answers to Circular Motion, Paper 4

1. Ans.: (b)		
2. Ans.: (c)		
3. Ans.: (a)		
4. Ans.: (c)		
5. Ans.: (d)		
6. Ans.: (b)		
7. Ans.: (c)		
8. Ans.: (b)		
9. Ans.: (c)		
10. Ans.: (b)		
11. Ans.: (a)		
12. Ans.: (d)		
13. Ans.: (c)		
15. Ans.: (a)		
16. Ans.: (d)		
17. Ans.: (d)		
18. Ans.: (d)		
19. Ans.: (a)		
20. Ans.: (d)		
21. Ans.: (d)		
22. Ans.: (a)		
23. Ans.: (c)		
24. Ans.: (c)		
25. Ans.: (b)		