GATE question papers: Chemical Engineering 2009 (CH)

	Q. 1 – Q. 20 carry one mark each.								
1.	The dir	ection of larges	t increase	e of the f	function xy ³ – x ²	at the point (1,	1) is		
	(A)	$3\hat{i} + \hat{j}$	(B)	î + 3ĵ	(C)	$-\hat{i}+3\hat{j}$	(D)	$-\hat{i}-3\hat{j}$	
2.	The mo	odulus of the co	mplex nu	umber $\frac{1}{\sqrt{1}}$	$\frac{+i}{2}$ is				
	(A)	$\frac{1}{2}$	(B)	$\frac{1}{\sqrt{2}}$	(C)	1	(D)	$\sqrt{2}$	
3.	The sys (A) (C)	stem of linear e rank of A > n rank of A < n	quations	Ax = 0, y	where A is an n (B) (D)	 × n matrix, has rank of A = n A is an identity 	a non-tri matrix	vial solution ONLY if	
4.	A dehu	midifier (shown	below) i	s used to	completely rem	nove water vapo	r from ai	r.	
		Wet air		D	ehumidifier	Dry air			
					. 2	_			
					Water				
	Which ((A)	ONE of the follo Water is the O	owing sta NLY tie o	itement i compone	s TRUE? nt				
	(B)	Air is the ONL'	Y tie com	ponent	nonents				
	(D)	There are no t	ie compo	onents	ponents				
5.	Dehydr reactor	ogenation of et (CSTR). The fe	hane, C ₂ l ed is pur	H_6 (g) \rightarrow the ethane	C_2H_4 (g) + H_2 (e. If the reactor of the re	g), is carried out exit stream cont	t in a cor ains unco	ntinuous stirred tank onverted ethane	
	(A)	1	(B)	2	(C)	3	(D)	4	
6.	An idea	Il gas at temper system. Which	ature T ₁ ONE of th	and pres ne follow	sure P ₁ is compl ing is TRUE for i	ressed isotherma internal energy (ally to pr (U) and (essure P ₂ (> P ₁ (in a Gibbs free energy (G)	
	(A)	$U_1 = U_2, G_1 >$	G_2		(B)	$U_1 = U_2, G_1 < 0$	G ₂		
	(C)	$U_1 > U_2, G_1 =$	G ₂		(D)	$U_1 < U_2, G_1 = 0$	G ₂		
7.	Under f	fully turbulent fl	ow cond	itions, th uid as	e frictional press	sure drop across	a packe	d bed varies with the	
	(A)	V ⁻¹	(B)	V	(C)	V ^{3/2}	(D)	V^2	
8.	For a m	nixing tank oper	ating in t	the lamin	ar regime, the p	ower number va	aries with	n the Reynolds	
	(A)	$Re^{-1/2}$	(B)	Re ^{1/2}	(C)	Re	(D)	Re ⁻¹	

- 9. During the transient convective cooling of a solid object, Biot number \rightarrow 0 indicates
 - (A) uniform temperature throughout the object
 - (B) negligible convection at the surface of the object
 - (C) significant thermal resistance within the object
 - (D) significant temperature gradient within the object
- 10. The Prandtl number of a fluid is the ratio of
 - (A) thermal diffusivity to momentum diffusivity
 - (B) momentum diffusivity to thermal diffusivity
 - (C) conductive resistance to convective resistance
 - (D) thermal diffusivity to kinematic viscosity
- 11. According to the penetration theory of mass transfer, the mass transfer coefficient (k) varies with diffusion coefficient (D) of the diffusing species as
 - (A) D (B) $D^{-1/2}$ (C) $D^{1/2}$ (D) $D^{3/2}$
- 12. The ratio of the liquid to gas flow rate in a counter-current gas absorption column is increased, at otherwise identical conditions. Which ONE of the following statements is TRUE?
 - (A) The operating line shifts towards the equilibrium curve
 - (B) The operating line shifts away from the equilibrium curve
 - (C) The concentration of the absorbed species increases in the exit liquid stream
 - (D) The operating line does not shift

13. For a homogenous reaction system, where C_j is the concentration of j at time t N_j is the number of moles of j at time t V is the reaction volume at time t t is the reaction time The rate of reaction for species j is defined as (A) $\frac{dC_j}{dt}$ (B) $-\left(\frac{dC_j}{dt}\right)$ (C) $\frac{1}{V}\frac{dN_j}{dt}$

- $\frac{1}{V} \frac{dN_j}{dt} \qquad (D) \qquad -\left(\frac{1}{V} \frac{dN_j}{dt}\right)$
- 14. The half-life of a first order liquid phase reaction is 30 seconds. Then the rate constant, in min⁻¹, is (A) 0.0231 (B) 0.602 (C) 1.386 (D) 2.0
- 15. For a solid-catalyzed reaction, the Thiele modulus is proportional to

(^)	int rinsic reaction rate	(P)	diffusion rate
(A)			$\sqrt{1}$ int rinsic reaction rate
(C)	int rinsic reaction rate		diffusionrate
(0)	diffusion rate		int rinsic reaction rate

16. Which ONE of the following sensors is used for the measurement of temperature in combustion process $(T > 1800^{\circ}C)$?

(A)	Type J thermocouple	(B)	Thermistor
(C)	Resistance temperature detector	(D)	Pyrometer

- 17. The roots of the characteristic equation of an underdamped second order system are
 - (A) real, negative and equal (B) real, negative and unequal
 - (C) real, positive and unequal (D) complex conjugates
- 18. The total fixed cost of a chemical plant is Rs. 10.0 lakhs; the internal rate of return is 15%, and the annual operating cost is Rs. 2.0 lakhs. The annualized cost of the plant (in lakhs of Rs.) is
 (A) 1.8 (B) 2.6 (C) 3.5 (D) 4.3

19.	In petro aromat	oleum refining c ics is	peration	s, the proc	ess use	d for co	onverting paraffi	ns and n	aphthenes to
	(A) (C)	catalytic reform hydrocracking	ning			(B) (D)	catalytic crackin alkylation	g	
20.	The act (A)	ive component Nickel	of cataly: (B)	sts use in s Iron	steam re (eformin (C)	g of methane to Platinum	produce (D)	e synthesis gas is Palladium
		Q . 2	2 1 t	o Q. 60	carry	v two	marks ead	ch.	
21.	The val	ue of the limit	$\frac{\cos x}{(x - \pi / 2)}$	$\overline{)^3}$ is	$\mathbf{\dot{0}}$				
	(A)	$-\infty$	(B)	0		(C)	1	(D)	∞
22.	The ge	neral solution of $\frac{d^2y}{d^2y} = \frac{dy}{dy} = -6x$	the diffe	erential eq	uation				
	with C.	$dx^2 dx$	tants of i	ntogration	ic				
	(A) (C)	$C_1 e^{-3x} + C_2 e^{-3x}$ $C_1 e^{3x} + C_2 e^{-3x}$	2x	negration		(B) (D)	$\begin{array}{l} C_1 \ e^{3x} \ + \ C_2 \ e^{-2x} \\ C_1 \ e^{-3x} \ + \ C_2 \ e^{2x} \end{array}$		
23.	Using t	he residue theo	rem, the	value of th	ne integr	ral (cou	Interclockwise)		
	Ū	$\oint \frac{8-7z}{z-4} dz$			6	-			
	around (A)	a circle with ce -20π i	nter at z (B)	= 0 and ra -40π	adius = (8 (whe (C)	re z is a comple» –40πi	(numbe (D)	r and i $= \sqrt{-1}$, is $40\pi i$
24.	Conside ∬(2xî	er the integral - 2yĵ + 5zk̂) ∙ r̂	dS		0				
	over th away fr (A)	e surface a sphere τ om the origin. I -180π	ere of rac Jsing the (B)	lius = 3 w Gauss div 0	ith cente ergence (er at th theore (C)	e origin, and sur em, the value of 90π	face uni this inte (D)	t normal n̂ pointing gral is 180π
25.	Using t	he trapezoidal r	ule and 4	equal inte	ervals (n	n = 4),	the calculated va	alue of t	he integral (rounded
	to the f	irst place of dec	timal) $\int_{0}^{\pi} s$	sinθd is					
	(A)	1.7	(B)	1.9		(C)	2.0	(D)	2.1
26.	The eig	envalues of ma	trix A =	[1 2] [4 3] an	d 5 and	–1. Th	en the eigenvalu	ies of -2	2A + 3I (I is a 2 × 2
	identity	matrix) are			\leq		1 1		1 1
	(A)	-7 and 5	(B)	7 and –5		(C)	$-\frac{1}{7}$ and $\frac{1}{5}$	(D)	$\frac{1}{7}$ and $-\frac{1}{5}$
27.	A fair d the eve	ie is rolled. Let ent of obtaining	R denote an odd n	the event umber. Th	of obta en whic	ining a h ONE	number less that of the following	n or equ about th	ual to 5 and S denote ne probability (P is
	(A)	P (R / S) = 1	(B)	P (R/S) =		(C)	P(S/R) = 1	(D)	P(S/R) = 0

Page 3 of 11

28. Pure water (stream W) is to be obtained from a feed containing 5 wt % salt using a desalination unit as shown below

If the overall recovery of pure water (through stream W) is 0.75 kg/kg feed, then the recycle ratio (R/F is (A) 0.25 (B) 0.5 (C) 0.75 (D) 1.0

29. For a binary mixture at constant temperature and pressure, which ONE of the following relations between activity coefficient (γ_i) and mole fraction (x_i) is thermodynamically consistent?

(A)
$$\ln \gamma_1 = -1 + 2x_1 - x_1^2$$
, $\ln \gamma_2 = \frac{1}{2} x_1^2$ (B) $\ln \gamma_1 = -1 + 2x_1 - x_1^2$, $\ln \gamma_2 = x_1^2$
(C) $\ln \gamma_1 = -1 + 2x_1 - x_1^2$, $\ln \gamma_2 = -\frac{1}{2} x_1^2$ (D) $\ln \gamma_1 = -1 + 2x_1 - x_1^2$, $\ln \gamma_2 = -x_1^2$

30. Two identical reservoirs, open at the top, are drained through pipes attached to the bottom of the tanks as shown below. The two drain pipes are of the same length, but of different diameters ($D_1 > D_2$)

Assuming the flow to be steady and laminar in both drain pipes, if the volumetric flow rate in the larger pipe is 16 times of that in the smaller pipe, the ratio D_1/D_2 is (A) 2 (B) 4 (C) 8 (D) 16

31. For an incompressible flow, the x- and y-components of the velocity vector are $v_x = 2(x + y); v_y = 3 (y + z)$ where x, y, z are in metres and velocities are in m/s. Then the z-component of the velocity vector (v_z) of the flow for the boundary condition $v_z = 0$ at z = 0 is (A) 5z (B) -5z (C) 2x + 3z (D) -2x - 3z

32. The terminal settling velocity of a 6 mm diameter glass sphere (density: 2500 kg/m³) in a viscous Newtonian liquid (density: 1500 kg/m³) is 100 μm/s. If the particle Reynolds number is small and the value of acceleration due to gravity is 9.81 m/s², then the viscosity of the liquid (in Pa·s) is (A) 100 (B) 196.2 (C) 245.3 (D) 490.5

Page 4 of 11

33. A well-insulated hemispherical furnace (radius = 1m) is shown below: The self-view factor of radiation for the curved surface 2 is

- 34. A double-pipe heat exchanger is to be designed to heat 4 kg/s of a cold feed from 20 to 40°C using a hot stream available at 160°C and a flow rate of 1 kg/s. The two streams have equal specific heat capacities and the overall heat transfer coefficient of the heat exchanger is $640 \text{ W/m}^2 \cdot \text{K}$. Then the ratio of the heat transfer areas required for the co-current to counter-current modes of operation is (A) 0.73 (B) 0.92 (C) 1.085 (D) 1.25
- 35. For the composite wall shown below (case 1) the steady state interface temperature is 180 °C. If the thickness of layer P is doubled (Case 2), then the rate of heat transfer (assuming 1-D conduction) is reduced by

- 36. Species A is diffusing at steady state from the surface of a sphere (radius = 1 cm) into a stagnant fluid. If the diffusive flux at a distance r = 3 cm from the center of the sphere is 27 mol/cm²·s, the diffusive flux (in mol/cm²·s) at a distance r = 9 cm is (A) 1 (B) 3 (C) 9 (D) 27
- 37. The feed to a binary distillation column has 40 mol % vapor and 60 mol % liquid. Then, the slope of the q-line in the McCabe-Thiele plot is

38. The equilibrium moisture curve for a solid is shown below:

39.

40.

 $(0, 0) \quad 5 \quad 10$ Time (min) \longrightarrow The mean residence time of the fluid in the reactor (in minutes) is
(A) 5.0 (B) 7.5 (C) 10.0 (D) 15.0

41. The inverse Laplace transform of
$$\frac{1}{2s^2 + 3s + 1}$$
 is

- (A) $e^{-t/2} e^{-t}$ (B) $2e^{-t/2} - e^{-t}$ (C) $e^{-t} - 2e^{-t/2}$ (D) $e^{-t} - e^{-t/2}$
- 42. The characteristic equation of a closed loop system using a proportional controller with gain K_c is

$$12s^{3} + 19s^{2} + 8s + 1 + K_{c} = 0$$

At the onset of instability, the value of K_c is
(A) 35/3 (B) 10 (C) 25/3 (D) 20/3

43. The block diagram for a control system is shown below:

For a unit step change in the set point, R(s), the steady state offset in the output Y(s) is(A)0.2(B)0.3(C)0.4(D)0.5

44. For a tank of cross-sectional area 100 cm² and inlet flow rate (Q_i in cm³/s), the outlet flow rate (Q_o in cm³/s) is related to the liquid height (H in cm) as $Q_o = 3 \sqrt{H}$ (see figure below).

Then the transfer function $\frac{\overline{H}(s)}{\overline{Q}_i(s)}$ (overbar indicates deviation variables) of the process around the steady-state point, $Q_{i,s} = 18 \text{ cm}^3/\text{s}$ and $H_s = 36 \text{ cm}$, is

(A)	$\frac{1}{100s + 1}$	(B)	$\frac{2}{200s + 1}$
(C)	$\frac{3}{300s+1}$	(D)	$\frac{4}{400s+1}$

45. A column costs Rs. 5.0 lakhs and has a useful life of 10 years. Using the double declining balance depreciation method, the book value of the unit at the end of five years (in lakhs of Rs.) is

Page 7 of 11

46. An equi-molar mixture of four hydrocarbons (1, 2, 3, 4) is to be separated into high purity individual components using a sequence of simple distillation columns (one overhead and one bottom steam). Four possible schemes are shown below.

Page 8 of 11

47.

48.	Match	the product in Group I w Group I P. Sodium carbonate Q. Ammonia R. Sulphuric acid	ith the name of the proc Group II 1. Haber 2. Solvay 3. Fischer-Tropsch 4. Contact	ess in Group II
	(A)	P - 2, Q - 1, R - 4	• (B)	P - 4, Q - 1, R - 2
	(C)	P - 3, Q - 4, R - 2	(D)	P - 2, Q - 1, R - 3
49.	Match	the product in Group I to Group I P. Ethylene Q. Methanol R. Phthalic anhydride	the raw material in Group II 1. Natural gas 2. Synthesis gas 3. Naphtha 4. Naphthalene	up II.
	(A)	P - 1, Q - 2, R - 3	(B)	P - 2, Q - 1, R - 4
	(C)	P - 3, Q - 1, R - 4	(D)	P - 3, Q - 2, R - 4
50.	Match	the unit process in Group Group I P. Steam cracking Q. Hydrocracking R. Condensation	 I with the industry in G Group II Petroleum refining Petrochemicals Polymers Soaps and detergent 	roup II s
	(A)	P - 1, Q - 2, R - 3	(B)	P - 2, Q - 3, R - 3
	(C)	P - 1, Q - 2, R - 4	(D)	P - 2, Q - 1, R - 3

Common Data for Questions 51 and 52:

An ideal gas with molar heat capacity $C_p = \frac{5}{2}R$ (where R = 8.314 J/mol·K) is compressed adiabatically from 1 bar and 300 K to pressure P2 in a closed system. The final temperature after compression is 600 K and the mechanically efficient of compression is 50%.

51.	The wo	rk required for c	ompress	ion (in kJ/	'mol) is					
	(A)	3.74	(B)	6.24	(C)	7.48	(D)	12.48		
52.	The fina (A)	al pressure P ₂ (ir 2 ^{3/4}	i bar) is (B)	2 ^{5/4}	(C)	2 ^{3/2}	(D)	2 ^{5/2}		
Com A slab (Common Data for Questions 53 and 54:									
insulate	ed and th	ne other side (x =	= L) mai	ntained						

at a constant temperature T_0 is shown below.

A uniformly distributed internal heat source produces heat in the slab at the rate of SW/m³. Assume the heat conduction to be steady and 1-D along the x-direction.

53.	The ma	aximum tempera	ture in tl	he slab occurs at	t x equal	to		
	(A)	0	(B)	L/4	(C)	L/2	(D)	L
54.	The he	at flux at $x = L$ is	S (P)		(C)	S I /2	(D)	S I
	(A)	0	(D)	3 L/4	(\mathbf{C})	3 L/Z	(D)	ЗL

Page 9 of 11

Common Data for Questions 55 and 56:

A flash distillation drum (see figure below) is used to separate a methanol-water mixture. The mole fraction of methanol in the feed is 0.5, and the feed flow rate is 1000 kmol/hr. The feed is preheated in a heater with heat duty Q_h and is subsequently flashed in the drum. The flash drum can be assumed to be an equilibrium stage, operating adiabatically. The equilibrium relation between the mole fractions of methanol in the vapor

and liquid phases is y = 4x. The ratio of distillate to feed flow rate is 0.5.

56. If the enthalpy of the distillate with reference to the feed is 3000 kJ/kmol, and the enthalpy of the bottoms with reference to the feed is -1000 kJ/kmol, the heat duty of the preheater (Q_h in kJ/hr) is (A) -2×10^{6} (B) -1×10^{6} (C) 1×10^{6} (D) 2×10^{6}

Linked Answer Questions

55.

Statement for Linked Answer Questions 57 and 58:

A free jet of water is emerging from a nozzle (diameter 75 mm) attached to a pipe (diameter 225 mm) as shown below.

The velocity of water at point A is 18 m/s. Neglect frition in the pipe and nozzle. Use $g = 9.81 \text{ m/s}^2$ and density of water = 1000 kg/m³.

57.	The vel	ocity of water at	the tip of	of the noz	zle (in m/s) is			
	(A)	13.4	(B)	18.0	(C)	23.2	(D)	27.1
58.	The ga (A)	uge pressure (in 80.0	kPa) at (B)	point B is 100.0		239.3	(D)	367.6

Page 10 of 11

Statement for Linked Answer Questions 59 and 60.

The liquid-phase reaction $A \rightarrow B + C$ is conducted isothermally at 50°C in a continuous stirred tank reactor (CSTR). The inlet concentration of A is 8.0 gmol/liter. At a space time of 5 minutes, the concentration of A at the exit of CSTR is 4.0 gmol/liter. The kinetics of the reaction is

$$-r_{A} = kC_{A}^{0.5} \frac{\text{gmol}}{\text{liter.min}}$$

A plug flow reactor of the same volume is added in series after the existing CSTR.

59. The rate constant (k) for this reaction at 50°C is

(A)	$0.2 \left(\frac{\text{gmol}}{\text{liter}}\right)^{0.5} \dots \text{min}^{-1}$	(B)	$0.2 \left(\frac{\text{literl}}{\text{lgmol}}\right)^{0.5} . \text{min}^{-1}$
(C)	$0.4 \left(\frac{\text{gmol}}{\text{liter}}\right)^{0.5} . \text{min}^{-1}$	(D)	$0.4 \left(\frac{\text{lliter}}{\text{lgmol}}\right)^{0.5} . \text{min}^{-1}$
The c	α	at the exit of the	nlug flow reactor is

60.	The cor	ncentration of A	(in gmol	/liter) at t	he exit of the	plug flow reacto	or is	
	(A)	0.5	(B)	1.0	(C)	2.0	(D)	2.5

End of Question Papers

