Questions on Rotational Motion, Paper 3

1. If I, α and τ are the moment of inertia, angular acceleration and torque respectively of a body rotating about any axis with angular velocity ω , then

(CPMT 82)

- (a) $\tau = I\alpha$ (c) $I = \tau\omega$ Answer: (a)
- $\begin{array}{ll} \text{(b)} & \tau = I\omega \\ \text{(d)} & \alpha = I\omega \end{array}$

0

5

5

0

2. The moment of inertia of a circular ring about an axis passing through its centre and normal to its plane is 200 gm \times cm². then its moment of inertia about a diameter is **(PMT 87 MP)** (a) 400 gm \times cm² (b) 300 gm \times cm²

(a) $400 \text{ gm} \times \text{cm}^{-}$ (b) $300 \text{ gm} \times \text{cm}^{-}$ (c) $200 \text{ gm} \times \text{cm}^{2}$ (d) $100 \text{ gm} \times \text{cm}^{2}$ Answer: (d)

- Two particles A and B, initially at rest, moves towards each other under a mutual force of attraction. At the instant when the speed of A is υ and the speed of B is 2 υ, the speed of centre of mass is, (IIT 82)
 - (a) Zero (b) υ (c) 1.5 υ (d) 3 υ Answer: (a)
- A body of M.I. 3 kg m² rotating with an angular velocity 2 rad/s has the same K.E. as a mass of 12 kg moving with a velocity of (MH-CET 99)
 (a) 1 m/s
 (b) 2 m/s
 (c) 4 m/s
 (d) 8 m/s
 Answer: (a)
- 5. Moment of inertia of a disc about the tangent parallel to its plane is I. The moment of inertia of the disc tangent and perpendicular to its plane is (MH-CET 2005)

(a)	31	(b)	31
	4		2
(c)	51	(d)	61
	6	(u)	5
Ans	wer: (d)		

6. The moment of inertia of a disc about its geometrical axis is I. then its M.I. about its diameter will be

(a)	I	(b)	21
(c)	<u> </u> 2	(d)	$\frac{1}{4}$
•			

Answer: (c)

- 7. A particle moves for 20 s with velocity 3 m/s and then moves with velocity 4 m/s for another 20 s and finally moves with velocity 5 m/s for next 20 s. what is the average velocity of the particle? (MHT-CET-2004)

 (a) 3 m/s
 (b) 4 m/s
 (c) 5 m/s
 (d) Zero
- 8. The term moment of momentum is called (C.P.M.T.74, MH-CET 99)
 (a) Momentum (b) Force
 (c) Torque (d) Angular momentum
 - Answer: (d)
- When a mass is rotating in a plane about a fixed point its angular momentum is directed along. (NCERT 82, MNR 87, MP 86)
 - (a) The radius

Answer: (b)

- (b) The tangent to orbit
- (c) The line at an angle of 45° to the plane of rotation
- (d) The axis of rotation
- Answer: (d)
- 10. A mass M is moving with a constant velocity parallel to the X-axis. Its angular momentum with respect to the origin
 - (a) Is zero
 - (b) Remains constant
 - (c) Goes on increasing(d) Goes on decreasingAnswer: (b)
- 11. The torque acting is 2000 Nm with an angular acceleration of 2 rad/s². The moment of inertia of body is **(MH-CET 2004)**
 - (a) 1200 kgm² (b) 900 kgm² (c) 1000 kgm² (d) Can't say Answer: (c)
- 12. By keeping moment of inertia of a body is constant, if we double the time period, then angular momentum of body (MH-CET 2005)
 (a) Remains constant (b) Doubles
 (c) Becomes half (d) Quadruples Answer: (c)

Rotational Motion

19.

D

5

പ

5

13. A disc of moment of inertia I_1 is rotating with angular velocity ω_1 about an axis perpendicular to its plane and passing through its centre. If another disc of moment of inertia I_2 about the same axis is gently placed over it, then the new angular velocity of the combined disc will be

(a)
$$\frac{(I_1 + I_2)\omega_1}{I_1}$$
 (b
(c) ω_1 (d)

 $\frac{\mathsf{I}_1 \omega_1}{\mathsf{I}_1 + \mathsf{I}_2}$

 $\frac{I_2\omega_1}{I_1+I_2}$

3MR²

2

 $7MR^{2}$

Answer: (b)

14. The moment of inertia of a disc about a tangent axis in its plane is (MHT-CET-2002)

(a)
$$\frac{mR^2}{4}$$
 (b)
(c) $\frac{5}{4}MR^2$ (d)
Answer: (c)

- 15. The centre of mass of a system of two particles divides. The distance between them (MHT-CET-2004)
 - (a) Inverse into of square of masses of particle
 - (b) Direct ratio of square of masses of particle
 - (c) Inverse ratio of masses of particle
 - (d) Direct ratio of masses of particle Answer: (c)
- A uniform disc of mass 2 kg is rotated about an 16. axis perpendicular to the plane of the disc. If radius of gyration is 50 cm, then the M.I. of disc about same axis is (MHT-CET-2006) 0.5 km^2 (a) 0.25 kg m^2 (h)

(a)	0.25 kg m	(u)	0.5 K <u>g</u> m
(c)	2 kg m ²	(d)	1 kg m²
Ans	wer: (b)		

A rod length is I density of material is D and area 17. of cross section A. it is rotates about its axes perpendicular to the length passing through its centre then find its kinetic energy is (MHT-CET-2008)

(a)
$$\frac{\text{Al}^3 \text{D}.\omega^2}{3}$$
 (b) $\frac{\text{Al}^3 \text{D}.\omega^2}{12}$
(c) $\text{Al}^3 \text{D}.\omega^2$ (d) $\text{Al}^3 \text{D}.\omega^2$

24

(a) (C)6

Answer: (d)

18. The moment of inertia of a thin rod of mass M and length I about an axis passing through one of its and perpendicular to length is. (PMT MP 95)

(a)
$$M\ell^2$$
 (b) $\frac{M\ell^2}{3}$
(c) $\frac{M\ell^2}{2}$ (d) $\frac{M\ell^2}{12}$
Answer: (b)

Constant torque acting on a uniform circular wheel

changes it angular momentum from A to 4 A in 4 seconds. The magnitude of this torque is (MP PMT 97) $\frac{3}{4}A$ (a) А (b)

(c) 4 A 12 A (d) Answer: (a)

- 20. A spherical solid ball of a kg mass and radius 3 cm is rotating about an axis passing through its centre with an angular velocity of 50 radian/s. the kinetic energy of rotation is (CPMT 89)
 - (a) 4500 J (b) 90 J $\frac{9}{20}$ J (d) (c) 910 J

Answer: (d)

- 21. When a steady torque is acting on a body, the body (NCERT 73)
 - (a) Continues in its state of rest or uniform motion along a straight line
 - (b) Gets linear acceleration
 - (c) Gets angular acceleration
 - (d) Rotates at a constant speed

Answer: (d)

22. The M.I. of a solid cylinder of mass M and radius R about a line parallel to the axis of the cylinder and ling on the surface of the cylinder is (MP-PMT 94)

(a)
$$\frac{2}{5}MR^2$$
 (b) $\frac{3}{5}MR^2$
(c) $\frac{3}{2}MR^2$ (d) $\frac{5}{2}MR^2$

Answer: (c)

- 23. The moment of inertia of a body comes into play (AFMC (pune) 79)
 - (a) In motion along a curved path
 - (b) In linear motion
 - (c) In rotational motion
 - (d) None of the above
 - Answer: (c)

24. The speed of a homogeneous, solid sphere after rolling down in the inclined plane of vertical height h, from rest without sliding is **(CBSE 92)**

